
DASH for 3D Networked Virtual Environment

Thomas Forgione
Université de Toulouse - IRIT

thomas.forgione@irit.fr

Axel Carlier
Université de Toulouse - IRIT

axel.carlier@enseeiht.fr

Géraldine Morin
Université de Toulouse - IRIT

morin@enseeiht.fr

Wei Tsang Ooi
National Univ. of Singapore

weitsang@nus.edu.sg

Vincent Charvillat
Université de Toulouse - IRIT

charvi@enseeiht.fr

Praveen Kumar Yadav
National Univ. of Singapore
praveen@comp.nus.edu.sg

ABSTRACT

DASH is now a widely deployed standard for streaming video con-

tent due to its simplicity, scalability, and ease of deployment. In this

paper, we explore the use of DASH for a different type of media

content ś networked virtual environment (NVE), with different

properties and requirements. We organize a polygon soup with

textures into a structure that is compatible with DASHMPD (Media

Presentation Description), with a minimal set of view-independent

metadata for the client tomake intelligent decisions about what data

to download at which resolution. We also present a DASH-based

NVE client that uses a view-dependent and network dependent

utility metric to decide what to download, based only on the infor-

mation in the MPD file. We show that DASH can be used on NVE

for 3D content streaming. Our work opens up the possibility of

using DASH for highly interactive applications, beyond its current

use in video streaming.

CCS CONCEPTS

· Information systems → Multimedia streaming; · Human-

centered computing → Virtual reality;

ACM Reference Format:

Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, Vincent

Charvillat, and Praveen Kumar Yadav. 2018. DASH for 3DNetworked Virtual

Environment. In 2018 ACM Multimedia Conference (MM ’18), October 22ś26,

2018, Seoul, Republic of Korea. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3240508.3240701

1 INTRODUCTION

With the standardization of Extensible 3D (X3D) format from the

Web3D Consortium and supports for WebGL in modern browsers,

we can now remotely visualize and interact with complex 3D net-

worked virtual environments (NVEs), such as 3D models of cities,

buildings, and archaeological sites, with applications ranging from

urban planning to tourism. These 3D scenes consist of the geometry

data (typically represented as 3D meshes) and textures (represented

as images), that can be up to order of hundreds of megabytes or

gigabytes in size. There have been a series of research work on how

to stream large-scale 3D models over the network for display and

interaction with the viewers (e.g., [4, 8, 9]). Yet there is currently no

widely adopted standard for a 3D streaming protocol, particularly,

MM ’18, October 22ś26, 2018, Seoul, Republic of Korea

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 2018 ACM
Multimedia Conference (MM ’18), October 22ś26, 2018, Seoul, Republic of Korea, https:
//doi.org/10.1145/3240508.3240701.

one that supports adaptation to dynamic network conditions. We

believe this lack of widely accepted standard protocol is hindering

a broader deployment of Web-based NVEs.

On the other hand, Dynamic Adaptive Streaming over HTTP

(DASH), or MPEG-DASH [16, 17], is now a widely deployed stan-

dard for streaming adaptive video content on the Web [10]. DASH

is simple and scalable. It uses the existing World Wide Web infras-

tructure and protocols. Hence it is easy to deploy in any network

that supports HTTP. DASH works with a standard HTTP server

and HTTP caching proxies without modification. It supports multi-

ple representations of the same video content at different bitrates

and lets the clients choose and adapt the quality in response to

changing network conditions. As the main adaptation logic lies on

the client, the server is stateless and simply acts as a server that

responds to HTTP requests. As the Web has demonstrated, such

stateless HTTP server can scale to a massive number of users.

Due to the strengths of DASH and a need for a protocol with

similar properties for streaming 3D scene, a natural question that

arises is whether DASH can be used for adaptive streaming of 3D

content for NVE. DASH, however, is designed for video streaming,

and adapting it for NVE is non-trivial. Unlike video, where viewing

progresses linearly (unless the user seeks), an NVE user can freely

navigate within the 3D scene. A typical NVE client would need to

determine, and possibly predict, what are the geometry data and

textures that fall into the viewing frustum (region defined by its

camera position, viewing angle, and look-at point). This should be

done purely in the client with only precomputed, view-independent

metadata from the server. Thus, the first challenge we face is what

are the view-independent metadata that the server needs to provide

along with 3D data to allow the client to make an intelligent view-

dependent decision on what to download? Clearly, the more metadata

the server provides along with the 3D data (for DASH, in a Media

Presentation Description (MPD) file), the better the decision that the

client can make, at the expense of increasing the size of theMPD file.

Better decision leads to a more efficient use of the bandwidth, with

the aim of being able to download all the visible 3D data content,

at the most appropriate resolution, without fetching data that is

outside the field of view or is occluded.

For NVE, the content to stream consists of geometry data (ver-

tices, faces, texture coordinates) and texture images. These data are

often provided as a polygon soup without semantic information

or a scene graph. The textures can be of different resolution levels.

The area of the faces can vary significantly as well, implying that

the decision as to which triangle to download can have a significant

impact on the viewing quality. As such, the second challenge we

face is how to organize the soup of 3D data into DASH adaptation

Figure 1: A subdivided 3D scene with a viewport, with regions delimited with red edges. In white, the regions that are outside

the field of view of the camera; in blue, the regions inside the field of view of the camera

sets, representation, and segments to facilitate decision making to

the DASH client, without semantic information.

In DASH video streaming, the bitrate of the segment correlates

with the quality of the video. A DASH client can maximize the

average bitrate (and hence the size) of the segments downloaded to

improve the quality of experience. In NVE streaming, the quality

of experience is determined by the rendered scene in the image

space (view dependent), whereas the size of the textures determines

only its quality in 3D space (view independent). A texture can be

mapped onto multiple faces and appear in different regions of the

3D scene. The relative impact of geometry data and textures on

the rendering quality also needs to be quantified. Hence, the third

challenge we face is what metadata to provide to support client’s rate

adaptation decisions, particularly the decisions of what to download

(geometry data or textures?), and at which resolution?

Contributions. Our contributions for this paper are three-fold.

First, we propose an organization of a polygon soup into a DASH-

compliant format that facilitates selective and adaptive download-

ing of 3D content by the client. We do not assume the availability

of semantic information nor structured scene graphs. Motivated by

the need to view a smaller subset of a large 3D scene most of the

time during navigation, we partition the 3D space into spatially co-

herent cells using an axis-aligned K-d tree. Faces that fall into a cell

are assigned to a single DASH adaptation set. Each cell contains

approximately the same number of faces (up to Na faces). Within

each adaptation set, the faces are grouped into Ns segments. To

manage the heterogeneity of the faces surface size, we treat faces

that are especially large (e.g., the ground or the sky) separately,

grouping them into a special adaptation set, allowing the client to

download these segments quickly.

The materials are declared in a single file that gives photometric

properties and textures of the geometry. This file is described in its

own adaptation set, in a single segment. The textures are placed

into separate adaptation sets, with different representations

for different texture resolutions. Separating the geometry and tex-

tures into different adaptation sets allows the DASH client to

trade off between the importance of the geometry and textures ac-

cordingly. The latter is not possible using the scheme proposed pre-

viously in [20]. Note that in this work, we do not implement multi-

resolution geometry (for reasons we will explain in Section 3.3),

even though our content preparation would allow it.

Second, we propose precomputation of a small set of metadata

that are helpful to the client in making rate adaptation and down-

load decisions. In particular, for each adaptation set of geometry

data, we include its bounding box; for adaptation set of texture, we

include its average color. For each segment of geometry data, we

include (i) the total area of the faces in 3D space; and (ii) the size

in bytes of the segment. For each segment of texture data, we in-

clude (i) the mean square error of the image, relative to the highest

resolution of the texture, and (ii) the size in bytes of the segment.

We show that this minimal set of view-independent information is

sufficient for complex decision making at the client.

Finally, we present a DASH-based NVE client that is adaptive to

network RTT, bandwidth, and navigational pattern. Using only the

metadata in the MPD file, the client selectively downloads adap-

tation sets that intersect with its viewing frustum and prioritizes

segments that are likely to contribute more to the viewing quality.

We also propose a utility metric that integrates the contribution of

geometry data and textures in the image space. This utility metric

is, independently, a useful metric that could be useful for other

applications that require a comparable objective metric to measure

the contribution of geometry data vs. texture data in a 3D scene.

Note that while our proposal is DASH-compliant, the contribu-

tion is not limited to DASH. It allows a stateless server to provide

only view-independent information and to organize a polygon soup

that is friendly to adaptation and selection by the client offline, in

a way that any client can derive on his own an efficient, view-

dependent, adaptive to network conditions streaming strategy.

Paper Organization. The rest of this paper is structured as

follows: Section 2 reviews the related work, and Section 3 describes

our proposal for adapting DASH for 3D content. In Section 4 we

detail the proposed DASH 3D client. Then, Section 5 presents the

experiments and results highlighting the impact of different design

parameters for DASH. Finally, we conclude in Section 6.

2 RELATED WORK

2.1 Streaming 3D Content

Accessing and interacting with 3D content over the web have been

explored in previous work. Behr et al. structure the 3D content to

allow access from a web browser [1]. In a recent standardization

effort, the Khronos group has proposed a generic format called glTF

[15] to handle all types of 3D content representations: point clouds,

meshes, animated model, etc. Although relevant for compression,

transmission and in particular streaming, this standard does not

yet consider view-dependent streaming.

Some work also focus on compression algorithms; Potenziani

et al. describe a system that progressively streams 3D content in

the context of cultural heritage [13]. Google Draco [6] is an open-

source effort to provide an efficient compression and decompression

system that can efficiently run on web browsers. Their work is

applied to an attributed geometry modeling a single object, but

the compression techniques are not suitable for a partitioned large

Networked Virtual Environments (NVE).

The work by Limper et al. on Shape Resource Container [11]

focuses more on the streaming aspect, aiming at rendering the

model progressively and adapting the content to fit GPU structures

to improve the rendering, but independently of the viewport.

The above does not consider view-dependent 3D streaming.

View-dependent 3D streaming has been investigated in the work

of Forgione et al. [4], where the authors use frustum and backface

culling on the server to determine a set of polygons to be streamed

by the client. Bookmarks provide a way to ease user navigation and

improve streaming efficiency. The drawback of this method is that it

does not scale well with the number of users due to the computation

load on the server. Cheng and Ooi [2] proposed a view-dependent

progressive mesh streaming system that is receiver-driven. Their

technique leads to a stateless server and is scalable. Their work,

however, focuses on a single progressive mesh structure and uses a

customized application-level protocol.

Balancing between streaming of geometry and texture data are

considered by Tian et al. [18], Guo et al. [7], and Yang et. al. [19].

All three work considered a single, manifold textured mesh model

with progressive meshes. Their approach is to combine the distor-

tion caused by having lower resolution meshes and textures into a

single view independent metric. Our work focuses on a whole, het-

erogeneous 3D scene where separate object coding is not applicable,

thus their proposed metric is not a good fit.

Zampoglou et al. are the first to propose DASH to stream 3D con-

tent [20]. In their work, the authors describe a system that allows

users to access 3D content at multiple resolutions. They organize the

content, following DASH terminology, into periods, adaptation

sets, representations. Their first adaptation set codes the

tree structure of an X3DOM. Each further adaptation set con-

tains both geometry and texture information and is available at

different resolutions defined in a corresponding representation.

To avoid requests that would take too long and thus introduce la-

tency, the representations are split into segments. The authors

discuss the optimal number of polygons that should be stored in a

single segment. On the one hand, using segments containing very

few faces will induce many HTTP requests from the client, and will

lead to poor streaming efficiency. On the other hand, if segments

contain too many faces, the time to load the segment will be long

and the system loses adaptability. The authors conclude that us-

ing segments of 5000 faces is a good compromise. This approach

works well for several objects, but does not handle view-dependent

streaming, which is desirable in the use case of large NVEs.

2.2 SRD-DASH

While typical DASH for video is designed for video playback with

a single dimension of freedom along the time axis, there are recent

work that have extended video playback to allow higher dimension

of freedom in interacting with the video, including panning (e.g.,

360-degree videos) and zooming (e.g., zoomable video [14]). These

schemes partition each video frame into tiles which can be decoded

independently by the client. In this context, Niamut et al. proposed

a modified version of traditional Media Presentation Description

(MPD) files using Spatial Representation Description (SRD) [12].

Such partial content retrieval and rendering help in zooming and

navigating through the content [3].

DASH for NVE shares many similarity with SRD-DASH: a user

may view only a subset of the content. SRD-DASH puts each tile

into a different adaptation set, and the client can only request for the

adaptation sets (the tiles) that fall within the current view. Similarly,

in our proposal, we partition 3D geometry and textures into cells

("3D tiles") and each cell forms an adaptation set. Unlike SRD-DASH

for video however, it is not straightforward to assign a 3D face to a

cell, since a large face (e.g., the sky or the ground) may intersect

with multiple cells.

3 MAPPING NVE INTO DASH

In this section, we describe howwe preprocess and store the 3D data

of the NVE, consisting of a polygon soup, textures, and material in-

formation into a DASH-compliant Media Presentation Description

(MPD) file. In our work, we use the obj file format for the poly-

gons, png for textures, and mtl format for material information.

The process, however, applies to other formats as well.

3.1 The MPD File

In DASH, the information about content storage and characteristics,

such as location, resolution, or size, are extracted from an MPD file

by the client. The client relies only on these information to decide

which chunk to request and at which quality level.

The MPD file is an XML file that is organized into different

sections hierarchically. The period element is a top-level element,

which for the case of video, indicates the start time and length of a

video chapter. This element does not apply to NVE, and we use a

single period for the whole scene, as the scene is static.

Each period element contains one or more adaptation sets,

which describe the alternate versions, formats, and types of me-

dia. We utilize adaptation sets to organize a 3D scene’s material,

geometry, and texture.

3.2 Adaptation Sets

When the user navigates freely within an NVE, the frustum at

given time almost always contains a limited part of the 3D scene.

Similar to how DASH for video streaming partitions a video clip

into temporal chunks, we segment the polygons into spatial chunks,

such that the DASH client can request only the relevant chunks.

Geometry Management. We use a space partitioning tree to

organize the faces into cells. A face belongs to a cell if its barycenter

falls inside the corresponding bounding box. Each cell corresponds

to an adaptation set. Thus, geometry information is spread on

adaptation sets based on spatial coherence, allowing the client to

download the relevant faces selectively. A cell is relevant if it inter-

sects the frustum of the client’s current viewpoint. Figure 1 shows

the relevant cells in blue. As our 3D content, a virtual environment,

is biased to spread the most along the horizontal plane, we alternate

between splitting between the two horizontal directions.

We create a separate adaptation set for large faces (e.g., the sky

or ground) because they are essential to the 3D model and do not fit

into cells. We consider a face to be large if its area in 3D is more than

a+ 3σ , where a and σ are the average and the standard deviation of

3D area of faces respectively. In our example, it selects the 5 largest

faces that represent 15% of the total face area. We thus obtain a

decomposition of the NVE into adaptation sets that partitions the

geometry of the scene into a small adaptation set containing the

larger faces of the model, and smaller adaptation sets containing

the remaining faces.

We store the spatial location of each adaptation set, character-

ized by the coordinates of its bounding box, in the MPD file as

the supplementary property of the adaptation set in the form of

łxmin , width,ymin , height, zmin , depthž (as shown in Listing 1). This

information is used by the client to implement a view-dependent

streaming (Section 4).

Texture Management. As with geometry data, we handle tex-

tures using adaptation sets but separate from geometry. Each tex-

ture file is contained in a different adaptation set, with multiple

representations providing different image resolutions (see Section

3.3). We add an attribute to each adaptation set that contains tex-

ture, describing the average color of the texture. The client can use

this attribute to render a face for which the corresponding texture

has not been loaded yet, so that most objects appear, at least, with

a uniform natural color (see Figure 2).

Material Management. The material .mtl file is a text file that

describes all materials used in the .obj files for the entire 3D model.

A material has a name, properties such as specular parameters, and,

most importantly, a path to a texture file. The .mtl file maps each

face of the .obj to a material. As the .mtl file is a different type of

media than geometry and texture, we define a particular adaptation

set for this file, with a single representation.

3.3 Representations

Each adaptation set can contain one or more representations of

the geometry or texture data, at different levels of detail (e.g., a

different number of faces). For geometry, the resolution (i.e., 3D

areas of faces) is heterogeneous, thus applying a sensible multi-

resolution representation is cumbersome: the 3D area of faces varies

from 0.01 to more than 10K , disregarding the outliers. For textured

scenes, it is common to have such heterogeneous geometry size

since information can be stored either in geometry or texture. Thus,

handling the streaming compromise between geometry and tex-

ture is more adaptive than handling separately multi-resolution

geometry. Moreover, as our faces are partitioned into independent

cells, multi-resolution would cause difficult stitching issues such as

topological gaps between the cells.

For an adaptation set containing texture, each representation

contains a single segment where the image file is stored at the

chosen resolution. In our example, from the full-size image, we

generate successive resolutions by dividing both height and width

by 2, stopping when the image size is less or equal to 64×64. Figure

2 illustrates the use of the textures against the rendering using a

single, average color per face.

Figure 2: Rendering of the model with full resolution tex-

ture (left), and faces with average default color (right).

1 <AdaptationSet>

2 <SupplementalProperty value="-8834.11230,2201.58853,

3 -0.16950, 174.81540,-1344.47740,4767.83367" />

4 <BaseURL>as1/</BaseURL>

5 <Representation>

6 <BaseURL>repr1/</BaseURL>

7 <SegmentList>

8 <SegmentURL area="2540342.3" size="120K" media="s0.obj" />

9 <SegmentURL area="1124.4" size="162K" media="s1.obj" />

10 <SegmentURL area="412.6" size="173K" media="s2.obj" />

11 <SegmentURL area="270.3" size="147K" media="s3.obj" />

12 </SegmentList>

13 </Representation>

14 </AdaptationSet>

15

16 <AdaptationSet area="198632.73912" average="178,176,173"

mimeType="image/png">

17 <BaseURL>textures/MFLOOR07.PNG/</BaseURL>

18 <Representation>

19 <BaseURL>64x64/</BaseURL>

20 <SegmentList>

21 <SegmentURL size="7K" mse="57.6" media="t.png" />

22 </SegmentList>

23 </Representation>

24 <Representation>

25 <BaseURL>128x128/</BaseURL>

26 <SegmentList>

27 <SegmentURL size="27K" mse="0.0" media="t.png" />

28 </SegmentList>

29 </Representation>

30 </AdaptationSet>

Listing 1:MPD description of a geometry adaptation set, and

a texture adaptation set.

3.4 Segments

To allow random access to the content within an adaptation set

storing geometry data, we group the faces into segments. Each seg-

ment is then stored as a .obj file that can be individually requested

by the client. For geometry, we partition the faces in an adaptation

set into sets of Ns faces, by first sorting the faces by their area in 3D

space in descending order, and then place each successive Ns faces

into a segment. Thus, the first segment contains the biggest faces

and the last one the smallest. In addition to the selected faces, a

segment stores all face vertices and attributes so that each segment

is independent. For textures, each representation contains a single

segment.

4 DASH 3D CLIENT

In this section, we specify a DASH NVE client that exploits the

preparation of the 3D content in an NVE for streaming.

The generated MPD file describes the content organization so

that the client gets all the necessary information to make educated

decisions and query the 3D content it needs according to the avail-

able resources and current viewpoint. A camera path generated by

a particular user is a set of viewpoint v(ti) indexed by a continuous

time interval ti ∈ [t1, tend].

The DASH client first downloads the MPD file to get the mate-

rial (.mtl) file containing information about all the geometry and

textures available for the entire 3D model. At time instance ti , the

DASH client decides to download the appropriate segments con-

taining the geometry and the texture to generate the viewpoint

v(ti+1) for the time instance ti+1.

Starting from t1, the camera continuously follows a camera path

C = {v(ti), ti ∈ [t1, tend]}, along which downloading opportunities

are strategically exploited to sequentially query the most useful

segments.

4.1 Segment Utility

Unlike video streaming, where the bitrate of each segment corre-

lates with the quality of the video received, for 3D content, the size

(in bytes) of the content does not necessarily correlate well to its

contribution to visual quality. A large polygon with huge visual

impact takes the same number of bytes as a tiny polygon. Further,

the visual impact is view dependent ś a large object that is far away

or out of view does not contribute to the visual quality as much as

a smaller object that is closer to the user. As such, it is important

for a DASH-based NVE client to estimate the usefulness of a given

segment to download, so that it can make good decisions about

what to download. We call this usefulness the utility of the segment.

The utility is a function of a segment, either geometry or texture,

and the current viewpoint (camera location, view angle, and look-at

point), and is therefore dynamically computed online by the client

from parameters in the MPD file.

Offline parameters. Let us detail first, all parameters available

from the offline/static preparation of the 3D NVE. These parame-

ters are stored in the MPD file. First, for each geometry segment

sG there is a predetermined 3D area A3D (s
G), equal to the sum

of all triangle areas in this segment (in 3D); it is computed as the

segments are created. Note that the texture segments will have sim-

ilar information, but computed at navigation time ti . The second

information stored in the MPD for all segments, geometry, and tex-

ture, is the size of the segment (in kB). Indeed, geometry segments

have close to a similar number of faces; their size is almost uniform.

For texture segments, the size is usually much smaller than the

geometry segments but also varies a lot, as between two successive

resolutions the number of pixels is divided by 4.

Finally, for each texture segment sT , the MPD stores the MSE

(mean square error) of the image and resolution, relative to the

highest resolution (by default, triangles are filled with its average

color). Offline parameters are stored in the MPD as shown in Listing

1.

Online parameters. In addition to the offline parameters stored

in the MPD file for each segment, view-dependent parameters are

computed at navigation time. First, a measure of 3D area is com-

puted for texture segments. As a texture maps on a set of triangles,

we account for the area in 3D of all these triangles. We could con-

sider such an offline measure (attached to the adaptation set con-

taining the texture), but we prefer to only account for the triangles

that have been already downloaded by the client. We call the set of

triangles colored by a texture T : ∆(sT) = ∆(T) (depending only on

T and equal for any representation/segment sT in this texture adap-

tation set). At each time ti , a subset of ∆(T) has been downloaded;

we denote it ∆(T , ti).

Moreover, each geometry segment belongs to a geometry adap-

tation set ASG whose bounding box coordinates are stored in the

MPD. Given the coordinates of the bounding box BB(ASG) and

the viewpoint v(ti) at time ti , the client computes the distance

D(v(ti),AS
G) of the bounding box BB(ASG) as the distance from

the center of BB(ASG) to the principal point of the camera, given

in v(ti).

Utility for geometry segments. We now have all parameters

to derive a utility measure of a geometry segment. Utility for texture

segments will follow from the geometric utility.

The utility of a geometric segment sG for a viewpoint v(ti) is:

U
(
sG ,v(ti)

)
=

A3D (s
G)

D(v(ti),ASG)2

where ASG is the adaptation set containing sG .

Basically, the utility of a segment is proportional to the area

that its faces cover, and inversely proportional to the square of the

distance between the camera and the center of the bounding box

of the adaptation set containing the segment. That way, we favor

segments with big faces that are close to the camera.

Utility for texture segments. For a texture T stored in a seg-

ment sT , the triangles in ∆(T) are stored in arbitrary geometry

segments, that is, they do not have spatial coherence. Thus, for

each kth downloaded geometry segment sG
k
, and total downloaded

segment K at time ti , we collect the triangles of ∆(T , ti) in s
G
k
, and

compute the ratio of A3D (s
G
k
) covered by these triangles. So, we

define the utility:

U
(
sT ,v(ti)

)
= psnr (sT)

∑

k ∈K

A3D (s
G
k
∩ ∆(T , ti))

A3D (s
G
k
)

U
(
sG
k
,v(ti)

)

where we sum over all geometry segments received before time ti
that intersect∆(T , ti) and such that the adaptation set it belongs to is

in the frustum. This formula defines the utility of a texture segment

by computing the linear combination of the utility of the geometry

segments that use this texture, weighted by the proportion of area

covered by the texture in the segment. We compute the PSNR by

using the MSE in the MPD and denote it psnr (sT). We do this to

acknowledge the fact that a texture at a greater resolution will have

a higher utility than a lower resolution texture. The equivalent term

for geometry is 1 (and does not appear).

Having defined a utility on both geometry and texture segments,

the client uses it next for its streaming strategy.

4.2 DASH Adaptation Logic

Along the camera path C = {v(ti)}, viewpoints are indexed by a

continuous time interval ti ∈ [t1, tend]. Contrastingly, the DASH

adaptation logic proceeds sequentially along a discrete time line.

The first request (HTTP request) made by the DASH client at

time t1 selects the most useful segment s∗1 to download and will be

followed by subsequent decisions at t2, t3, While selecting s∗i ,

the i-th best segment to request, the adaptation logic compromises

between geometry, texture, and the available representations

given the current bandwidth, camera dynamics, and the previously

described utility scores. The difference between ti+1 and ti is the

s∗i delivery delay. It varies with the segment size and network con-

ditions. Algorithm 1 details how our DASH client makes decisions.

input : Current index i , time ti , viewpoint v(ti), buffer of

already downloaded segments Bi , MPD

output :Next segment s∗i to request, updated buffer Bi+1

- Estimate the bandwidth B̂Wi and RTT τ̂i ;

- Among all segments that are not already downloaded

s ∈ S\Bi , keep the ones inside the upcoming viewing

frustums FC = FC(v̂(ti)), t ∈ [ti , ti + χ] thanks to a

viewpoint predictor ti → v̂(ti), a temporal horizon χ and a

frustum culling operator FC ;

- Optimize a criterion Ω based on U values and well chosen

viewpoint(s) v(ti) to select the next segment to query

s∗i = argmax
s ∈S\Bi∩FC

Ωθi

(
U(s,v(ti)

)

given parameters θi that gathers both online parameters

(i, ti ,v(ti), B̂Wi , τ̂i ,Bi) and offline metadata;

- Update the buffer Bi+1 for the next decision: s
∗
i and lowest

representations of s∗i are considered downloaded;

- return segment s∗i , buffer Bi+1;
Algorithm 1: Algorithm to identify the next segment to query

The most naive way to sequentially optimize the U is to limit

the decision-making to the current viewpointv(ti). In that case, the

best segment s to request would be the one maximizing U(s,v(ti))

to simply make a better rendering from the current viewpoint

v(ti). Due to transmission delay however, this segment will be only

delivered at time ti+1 = ti+1(s) depending on the segment size and

network conditions:

ti+1(s) = ti +
size(s)

B̂Wi

+ τ̂i

In consequence, the most useful segment from v(ti) at decision

time ti might be less useful at delivery time from v(ti+1).

A better solution is to download a segment that is expected to

be the most useful in the future. With a temporal horizon χ , we

can optimize the cumulatedU over [ti+1(s), ti + χ] :

s∗i = argmax
s ∈S\Bi∩FC

∫ ti+χ

ti+1(s)
U(s, v̂(ti))dt (1)

In our experiments, we typically use χ = 2s and estimate the (1)

integral by a Riemann sum where the [ti+1(s), ti + χ] interval is di-

vided in 4 subintervals of equal size. For each subinterval extremity,

an order 1 predictor v̂(ti) linearly estimates the viewpoint based

on v(ti) and speed estimation (discrete derivative at ti).

Files Size Files Size

3DS Max 55 MB OBJ file 62 MB

Textures (high res) 167 MB MTL file 0.27Mb

Textures (low res) 11 MB

Table 1: Sizes of the different files of the model

We also tested an alternative greedy heuristic selecting the seg-

ment that optimizes an utility variation during downloading (be-

tween ti and ti+1): ty

sGREEDYi = argmax
s ∈S\Bi∩FC

U
(
s, v̂(ti+1(s))

)

ti+1(s) − ti
(2)

5 EVALUATION

We now describe our setup and the data we use in our experiments.

We present an evaluation of our system and a comparison of the

impact of the design choices we introduced in the previous sections.

5.1 Experimental Setup

Model.We use a city model of the Marina Bay area in Singapore

in our experiments. The model came in 3DS Max format and has

been converted into Wavefront OBJ format before the processing

described in Section 3. The converted model has 387,551 vertices

and 552,118 faces. Table 1 gives some general information about

the model. We partition the geometry into a k-d tree until the leafs

have less than 10000 faces, which gives us 64 adaptation sets, plus

one containing the large faces.

UserNavigations.To evaluate our system, we collected realistic

user navigation traces that we can replay in our experiments. We

presented six users with a web interface, on which the model was

loaded progressively as the user could interact with it. The available

interactions were inspired by traditional first-person interactions

in video games, i.e., W, A, S, and D keys to translate the camera, and

mouse to rotate the camera. We asked users to browse and explore

the scene until they felt they had visited all important regions. We

then asked them to produce camera navigation paths that would

best present the 3D scene to a user that would discover it. To record

a path, the users first place their camera to their preferred starting

point, then click on a button to start recording. Every 100ms, the

position, viewing angle of the camera and look-at point are saved

into an array that will then be exported into JSON format. The

recorded camera trace allows us to replay each camera path to

perform our simulations and evaluate our system. We collected 13

camera paths this way.

Network Setup.We tested our implementation under three net-

work bandwidth of 2.5 Mbps, 5 Mbps, and 10 Mbps with an RTT of

38 ms, following the settings from DASH-IF [5]. The values are kept

constant during the entire client session to analyze the difference

in magnitude of performance by increasing the bandwidth.

In our experiments, we set up a virtual camera that moves along

a navigation path, and our access engine downloads segments in

real time according to Algorithm 1. We log in a JSON file the time

Parameters Values

Content preparation Octree, k-d tree

Utility Offline, Online, Proposed

Streaming policy Greedy, Proposed

Grouping of Segments Sorted based on area, Unsorted

Bandwidth 2.5 Mbps, 5 Mbps, 10 Mbps

Table 2: Different parameters in our experiments

when a segment is requested and when it is received. By doing so,

we avoid wasting time and resources to evaluate our system while

downloading segments and store all the information necessary to

plot the figures introduced in the subsequent sections.

Hardware and Software. The experiments were run on an

Acer Aspire V3 with an Intel Core i7-3632QM processor and an

NVIDIA GeForce GT 740M graphics card. The DASH client is writ-

ten in Rust1, using Glium2 for rendering, and reqwest3 to load the

segments.

Metrics. To objectively evaluate the quality of the resulting

rendering, we use PSNR. The scene as rendered offline using the

same camera path with all the geometry and texture data available

is used as ground truth. Note that a pixel error can occur in our

case only in two situations: (i) when a face is missing, in which

case the color of the background object is shown, and (ii) when a

texture is either missing or downsampled. We do not have pixel

error due to compression.

Experiments. We present experiments to validate our imple-

mentation choices at every step of our system. We replay the user-

generated camera paths with various bandwidth conditions while

varying key components of our system.

Table 2 sums up all the components we varied in our experi-

ments. We compare the impact of two space-partitioning trees, a

k-d tree and an Octree, on content preparation. We also try sev-

eral utility metrics for geometry segments: an offline one, which

assigns to each geometry segment sG the cumulated 3D area of

its belonging faces A3D (s
G); an online one, which assigns to each

geometry segment the inverse of its distance to the camera posi-

tion; and finally our proposed method, as described in Section 4.1

(A3D (s
G)/D(v(ti),AS

G)2). We consider two streaming policies to

be applied by the client, proposed in Section 4. The greedy strategy

determines, at each decision time, the segment that maximizes its

predicted utility at arrival divided by its predicted delivery delay,

which corresponds to equation (2). The second streaming policy

that we run is the one we proposed in equation (1). We have also

analyzed the effect of grouping the faces in geometry segments

of an adaptation set based on their 3D area. Finally, we try sev-

eral bandwidth parameters to study how our system can adapt to

varying network conditions.

1https://www.rust-lang.org/
2https://github.com/glium/glium
3https://github.com/seanmonstar/reqwest/

0 20 40 60 80

10

20

30

40

Time (in s)

P
SN

R

k -d tree

octree

Figure 3: Impact of the space-partitioning tree on the ren-

dering quality with a 5Mbps bandwidth.

0 20 40 60 80

10

20

30

40

Time (in s)

P
SN

R
Proposed

Online only

Offline only

Figure 4: Impact of the segment utility metric on the render-

ing qualit with a 5Mbps bandwidth.

5.2 Experimental Results

Figure 3 shows how the space partition can affect the rendering

quality. We use our proposed utility metrics (see Section 4.1) and

streaming policy from Equation (1), on content divided into adap-

tation sets obtained either using a k-d tree or an Octree and run

experiments on all camera paths at 5 Mbps. The Octree partitions

content into non-homogeneous adaptation sets; as a result, some

adaptation sets may contain smaller segments, which contain both

important (large) and non-important polygons. For the k-d tree,

we create cells containing the same number of faces Na (here, we

take Na = 10k). Figure 3 shows that the system seems to be slightly

less efficient with an Octree than with a k-d tree based partition,

but this result is not significant. For the remaining experiments,

partitioning is based on a k-d tree.

Figure 4 displays how a utility metric should take advantage of

both offline and online features. The experiments consider k-d tree

cell for adaptation sets and the proposed streaming policy, on all

camera paths. We observe that a purely offline utility metric leads

to poor PSNR results. An online-only utility improves the results,

as it takes the user viewing frustum into consideration, but still,

the proposed utility (in Section 4.1) performs better.

Figure 5 shows the effect of grouping the segments in an adapta-

tion set based on their area in 3D. Clearly, the PSNR significantly

0 20 40 60 80

10

20

30

40

Time (in s)

P
SN

R

Sorting the faces by area

Without sorting the faces

Figure 5: Impact of creating the segments of an adaptation

set based on decreasing 3D area of faces with a 5Mbps band-

width.

First 30 Sec Overall

BW (in Mbps) 2.5 5 10 2.5 5 10

Greedy 14.4 19.4 22.1 19.8 26.9 29.7

Proposed 16.3 20.4 23.2 23.8 28.2 31.1

Table 3: Average PSNR, Greedy vs. Proposed

improves when the 3D area of faces is considered for creating the

segments. Since all segments are of the same size, sorting the faces

by area before grouping them into segments leads to a skew dis-

tribution of how useful the segments are. This skewness means

that the decision that the client makes (to download those with the

largest utility first) can make a bigger difference in the quality.

We also compared the greedy vs. proposed streaming policy (as

shown in Figure 6 for limited bandwidth (5 Mbps). The proposed

scheme outperforms the greedy during the first 30s and does a

better job overall. Table 3 shows the average PSNR for the proposed

method and the greedy method for different downloading band-

width. In the first 30 sec, since there are relatively few 3D contents

downloaded, making a better decision at what to download matters

more: we observe during that time that the proposed method leads

to 1 - 1.9 dB better in quality terms of PSNR compared to Greedy.

Table 4 shows the distribution of texture resolutions that are

downloaded by greedy and our Proposed scheme, at different band-

widths. Resolution 5 is the highest and 1 is the lowest. The table

clearly shows a weakness of the greedy policy: as the bandwidth

increases, the distribution of downloaded textures resolution stays

more or less the same. In contrast, our proposed streaming policy

adapts to an increasing bandwidth by downloading higher reso-

lution textures (13.9% at 10 Mbps, vs. 0.3% at 2.5 Mbps). In fact,

an interesting feature of our proposed streaming policy is that it

adapts the geometry-texture compromise to the bandwidth. The

textures represent 57.3% of the total amount of downloaded bytes

at 2.5 Mbps, and 70.2% at 10 Mbps. In other words, our system tends

to favor geometry segments when the bandwidth is low, and favor

texture segments when the bandwidth increases.

0 20 40 60 80

10

20

30

40

Time (in s)

P
SN

R

Proposed

Greedy

Figure 6: Impact of the streaming policy (greedy vs. pro-

posed) with a 5 Mbps bandwidth.

Resolutions 2.5 Mbps 5 Mbps 10 Mbps

1 5.7% vs 1.4% 6.3% vs 1.4% 6.17% vs 1.4%

2 10.9% vs 8.6% 13.3% vs 7.8% 14.0% vs 8.3%

3 15.3% vs 28.6% 20.1% vs 24.3% 20.9% vs 22.5%

4 14.6% vs 18.4% 14.4% vs 25.2% 14.2% vs 24.1%

5 11.4% vs 0.3% 11.1% vs 5.9% 11.5% vs 13.9%

Table 4: Percentages of downloaded bytes for textures from

each resolution, for the greedy streaming policy (left) and

for our proposed scheme (right)

6 CONCLUSION AND FUTUREWORK

Our work in this paper started with the question: can DASH be

used for NVE? The answer is yes. In answering this question, we

contributed by showing how to organize a polygon soup and its

textures into a DASH-compliant format that (i) includes a minimal

amount of metadata that is useful for the client, (ii) organizes the

data to allow the client to get the most useful content first. We

further show that these metadata that is precomputed offline is

sufficient to design and build a DASH client that is adaptive ś it can

selectively download segments within its view, make intelligent

decisions about what to download, balancing between geometry

and texture while being adaptive to network bandwidth. We believe

our proposed DASH for NVE is flexible enough for the community

to start the simplicity and ease of deployment of DASH for NVE

and to start investigating different streaming strategies to improve

the quality of experience of NVE users.

In the future, we will try to take into account any semantic

information that would be available to avoid splitting buildings in

different adaptation sets for example. With semantic information,

we will also try to embed multi-resolution geometry support, and

define the utility metrics accordingly.

REFERENCES
[1] J. Behr, Y. Jung, J. Keil, T. Drevensek, M. Zoellner, P. Eschler, and D. Fellner.

2010. A scalable architecture for the HTML5/X3D integration model X3DOM. In
Proceedings of the 15th International Conference onWeb 3D Technology - Web3D ’10.
ACM, Los Angeles, California, 185ś194. https://doi.org/10.1145/1836049.1836077

[2] Wei Cheng andWei Tsang Ooi. 2008. Receiver-driven View-dependent Streaming
of Progressive Mesh. In Proceedings of the 18th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV ’08). ACM,
Braunschweig, Germany, 9ś14. https://doi.org/10.1145/1496046.1496049

[3] Lucia D’Acunto, Jorrit van den Berg, Emmanuel Thomas, and Omar Niamut.
2016. Using MPEG DASH SRD for zoomable and navigable video. In Proceedings
of the 7th International Conference on Multimedia Systems (MMSys ’16). ACM,
Klagenfurt, Austria, 34ś37.

[4] Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, and Vincent
Charvillat. 2016. Impact of 3D Bookmarks on Navigation and Streaming in a
Networked Virtual Environment. In Proceedings of the 7th International Conference
on Multimedia Systems (MMSys ’16). ACM, Klagenfurt, Austria, Article 9, 10 pages.
https://doi.org/10.1145/2910017.2910607

[5] DASH Industry Forum. 2014. Guidelines for implementation: DASH-AVC/264
test cases and vectors. http://dashif.org/guidelines/.

[6] Google. 2017. Draco. https://github.com/google/draco.
[7] Jinjiang Guo, Vincent Vidal, Irene Cheng, Anup Basu, Atilla Baskurt, and Guil-

laume Lavoue. 2017. Subjective and objective visual quality assessment of tex-
tured 3D meshes. ACM Transactions on Applied Perception (TAP) 14, 2 (2017),
11.

[8] Shun-Yun Hu, Ting-Hao Huang, Shao-Chen Chang, Wei-Lun Sung, Jehn-Ruey
Jiang, and Bing-Yu Chen. 2008. FLoD: A framework for peer-to-peer 3D stream-
ing. In Proceedings of the 27th IEEE Conference on Computer Communications
(INFOCOM ’08). IEEE, IEEE, Phoenix, AZ, USA, 1373ś1381.

[9] Yonghao Hu, Zhaohui Chen, Xiaojun Liu, Fei Huang, and Jinyuan Jia. 2017.
WebTorrent based fine-grained P2P transmission of large-scale WebVR indoor
scenes. In Proceedings of the 22nd International Conference on 3D Web Technology.
ACM, 7.

[10] ISO/IEC 23009-1:2014 2014. Information technology ś Dynamic adaptive streaming
over HTTP (DASH) ś Part 1: Media presentation description and segment formats.
Standard.

[11] Max Limper, Maik Thöner, Johannes Behr, and Dieter W. Fellner. 2014. SRC
- a Streamable Format for Generalized Web-based 3D Data Transmission. In
Proceedings of the 19th International ACM Conference on 3D Web Technologies
(Web3D ’14). ACM, Vancouver, British Columbia, Canada, 35ś43. https://doi.org/

10.1145/2628588.2628589
[12] Omar A. Niamut, Emmanuel Thomas, Lucia D’Acunto, Cyril Concolato, Franck

Denoual, and Seong Yong Lim. 2016. MPEG DASH SRD: Spatial Relationship
Description. In Proceedings of the 7th International Conference on Multimedia
Systems (MMSys ’16). ACM, Klagenfurt, Austria, Article 5, 8 pages. https://doi.
org/10.1145/2910017.2910606

[13] Marco Potenziani, Marco Callieri, Matteo Dellepiane, Massimiliano Corsini, Fed-
erico Ponchio, and Roberto Scopigno. 2015. 3DHOP: 3D heritage online presenter.
Computers & Graphics 52 (2015), 129ś141.

[14] Ngo Quang Minh Khiem, Guntur Ravindra, Axel Carlier, andWei Tsang Ooi. 2010.
Supporting Zoomable Video Streams with Dynamic Region-of-interest Cropping.
In Proceedings of the First Annual ACM SIGMM Conference on Multimedia Systems
(MMSys ’10). ACM, NewYork, NY, USA, 259ś270. https://doi.org/10.1145/1730836.
1730868

[15] Fabrice Robinet and Cesium Patrick Cozzi. 2013. glTF - Runtime asset format for
WebGL, OpenGL ES, and OpenGL.

[16] Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE Multimedia 18, 4 (apr 2011), 62ś67. https://doi.org/10.1109/
MMUL.2011.71

[17] Thomas Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP ś: Stan-
dards and Design Principles. In Proceedings of the Second Annual ACM Confer-
ence on Multimedia Systems (MMSys ’11). ACM, San Jose, CA, USA, 133ś144.
https://doi.org/10.1145/1943552.1943572

[18] Dihong Tian and Ghassan AlRegib. 2008. Batex3: Bit allocation for progressive
transmission of textured 3-d models. IEEE Transactions on Circuits and Systems
for Video Technology 18, 1 (2008), 23ś35.

[19] Sheng Yang, Chao-Hua Lee, and C.-C. Jay Kuo. 2004. OptimizedMesh and Texture
Multiplexing for Progressive Textured Model Transmission. In Proceedings of the
12th Annual ACM International Conference on Multimedia (MULTIMEDIA ’04).
ACM, New York, NY, USA, 676ś683. https://doi.org/10.1145/1027527.1027683

[20] Markos Zampoglou, Kostas Kapetanakis, Andreas Stamoulias, Athanasios G.
Malamos, and Spyros Panagiotakis. 2016. Adaptive streaming of complex Web
3D scenes based on the MPEG-DASH standard. Multimedia Tools and Applications
(Dec 2016), 1ś24. https://doi.org/10.1007/s11042-016-4255-8

