
3D Interest Maps From Simultaneous Video Recordings

Axel Carlier
Université de Toulouse
axel.carlier@irit.fr

Lilian Calvet
Simula Research Laboratory

lcalvet@simula.no
Duong T. D. Nguyen and Wei Tsang Ooi

National University of Singapore
{nguyend1, ooiwt}@comp.nus.edu.sg

Pierre Gurdjos and Vincent Charvillat
Université de Toulouse

{gurdjos,vcharvillat}@irit.fr

ABSTRACT
We consider an emerging situation where multiple cameras are film-
ing the same event simultaneously from a diverse set of angles. The
captured videos provide us with the multiple view geometry and an
understanding of the 3D structure of the scene. We further extend
this understanding by introducing the concept of 3D interest map in
this paper. As most users naturally film what they find interesting
from their respective viewpoints, the 3D structure can be annotated
with the level of interest, naturally crowdsourced from the users. A
3D interest map can be understood as an extension of saliency maps
in the 3D space that captures the semantics of the scene. We evalu-
ate the idea of 3D interest maps on two real datasets, taken from the
environment or the cameras that are equipped enough to have an es-
timation of the poses of cameras and a reasonable synchronization
between them. We study two aspects of the 3D interest maps in our
evaluation. First, by projecting them into 2D, we compare them
to state-of-the-art saliency maps. Second, to demonstrate the use-
fulness of the 3D interest maps, we apply them to a video mashup
system that automatically produces an edited video from one of the
datasets.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video

1. INTRODUCTION
The proliferation of video capturing devices has lead to an explo-

sion of user-generated video content. In this paper, we consider the
case of public performances (music, dance, sport, magic, theater
etc.) with a spectating crowd that film the performance with either
their mobile devices or a static camera. This behavior is particu-
larly interesting as multiple videos of the same scene are captured
from multiple diverse viewpoints.

Figure 1 shows an example of the scenario we consider, where
an open air performance has six cameras surrounding the stage at
ground level (labeled 1 to 6) and one camera filming the perfor-
mance from above with two zoom levels (labeled 7 and 8). We can
treat the scene being filmed as a type of 3D visual content, with the
videos of this scene filmed from different viewpoints containing,
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Figure 1: A dance performance from RagAndFlag dataset.
Cameras 1 to 6 are located around the stage at ground level.
Camera 7 shoots this picture (zoom position 8) and occasion-
ally zoom into the red rectangle (zoom position 7). A 3D in-
terest map is drawn in white in the 3D space and also in the
2D image space after re-projection of the 3D map (with black
background).

collectively, a large part of this 3D content. If we know the param-
eters of the cameras filming the scene, the 3D structure can be par-
tially reconstructed. But what is more interesting is that what users
choose to film in a scene signals the interestingness of the region
in 3D space that is being filmed. When a videographer selects his
zoom level or his preferred framing, he implicitly reveals the inter-
estingness of the scene he films. For example in Figure 1, the user
who is shooting with the top camera (at zoom level 7 represented
by the red rectangle) is obviously interested in the stage, because
he zoomed in towards it. By generalization, several videographers
collectively reveal the most interesting 3D parts of the scene where
many view frustums intersect. Thus, it is feasible to label the re-
constructed 3D structure with a level of interest. This idea led us to
introduce a new concept called 3D interest map in this paper.

Intuitively, a 3D interest map represents some hot spots as il-
lustrated in white in Figure 1 and explained by a distribution of
interest with several modes or peaks (adjusted to the locations of
human performers in this example). Note that the 3D interest maps
can also been re-projected into 2D frames and become a standard
(2D) saliency maps (as shown on the black and white region of
Figure 1), but with the additional advantage that salient regions are
consistent between videos filmed from different angles. Estimating
such a multi-modal distribution from several synchronized videos
is the main contribution of this work.

The constructed 3D interest maps are useful in many applica-
tions. We focus on the application of automated video authoring in
this paper. In particular, we use 3D interest maps as additional in-



put to a video mashup system that automatically switches between
input video streams to produce a single temporally coherent video.
The use of 3D interest maps allows the algorithm to exploit inter-
estingness information for close up shots and to generate virtual
camera movements. Furthermore, the availability of information
across videos allows using the system to maintain coherence when
it cuts from one camera to another. We show that 3D interest maps
lead to better mashup videos. Our improvement of video mashups
using 3D interest maps is the second contribution of this paper.

The paper is organized into seven sections. We first review the
related work in Section 2. We then formally define the concept of
3D interest maps in Section 3, before explaining our algorithm to
compute 3D interest maps in Section 4. Section 5 demonstrate the
usefulness of 3D interest maps by applying them to a video mashup
system. The experiments and evaluation results are presented in
Section 6. Finally, the paper concludes in Section 7.

2. RELATED WORK
Our literature review is organized into three subsections. We

first position our 3D interest maps in relation to other attention
models. Then, we explain how the proposed approach relates to
crowdsourcing, before reviewing several systems similar to ours.

Salient Region Detection. Salient regions or objects from any
given image or video direct human attention by definition. In their
recent survey [3], Borji and Itti discuss the most important visual
attention models that compute saliency maps. In his pioneer work,
Itti [15] devised the first bottom-up visual saliency model using dif-
ferences across multi-scale image features. More recently, Gofer-
man et al. [12] combine local low-level information, higher level
features, and a more global spatial context to detect salient objects.
This bottom-up detector, along with a few others, have been shown
to be effective [4]. We use this detector in our work as a reference
for some of our experiments. Top-down models for saliency detec-
tion can be even more effective in specific environments, but they
usually require a costly learning stage [2].

The temporal dimension is a key factor when detecting dynamic
salient regions in video sequences. For a given frame, the most
salient regions should be selected from both the current image saliency
map and the previous detections [17]. Further, it is natural to pre-
dict salient regions from motion maps in a video.

In the context of 3D visual content, Dittrich et al. [9] propose
an approach for saliency detection in stereoscopic videos based on
color, motion, and disparity. The last factor is used as regions that
pops up in the scene tend to catch users’ attention.

This existing work aims to determine the salient regions from
low-level features of visual content. A salient region, however,
does not necessary imply that it is interesting or important, two
attributes that require an understanding of the semantics of the con-
tent and the users’ intentions and are difficult to infer from features
alone. Our approach, however, accounts for user intention which
are implicitly indicated by the scene they are filming.

Crowdsourcing users’ interest. To address the semantic gap,
several crowdsourcing-based methods have been proposed to iden-
tify interesting regions in images and videos. The idea is that, by
polling (either implicitly or explicitly) from multiple users what
they find interesting, we can discover the interestingness of a re-
gion without needing to explicitly infer the semantic of the content.

In the context of games with a purpose (GWAPs) and human
computation, Huang et al. [14] developed a collaborative game,
called Photoshoot, for extracting image ROIs from shoot points that
serve in the role of gaze points. Crowdsourcing users’ interest can
be also done more implicitly. As an example, Xie et al. [31] con-
sidered a mobile use-case with image browsers, where users tend

to zoom and scroll to view interesting regions in detail on a small
screen. By crowdsourcing these actions, a ROI extraction model
can produce user interest maps. This approach, using implicit feed-
back while users are browsing still images, has been extended to
infer moving ROIs based on video browsing behaviors [5, 6]. In
this work, the users naturally zoom into the video and reveal ROIs.
In our work, we consider that users around the scene are also im-
plicitly interacting with it by filming the scene; a user filming a 3D
region is implicitly designating this region as interesting.

Applications based on simultaneous video capture.
Multiple videos captured simultaneously can be automatically

edited to produce a new mashup video similarly to how a human di-
rector would switch between different cameras to produce a show.
Shrestha et al. [26] address this problem, and select the cameras
by maximizing video quality. They also explain in [25] how to
synchronize multiple cameras from the available multimedia con-
tent. Saini et al. [23] expand this effort on video mashups with
live applications in mind. The system decides which camera to
switch to without any reference to future information. Their im-
proved model jointly maximizes the video signal quality, but also
the diversity and quality of the view angles, as well as some aes-
thetic criteria that include shot lengths and distances from the stage.
We explain in Section 5 how 3D interest maps make it possible
to improve these mashups by introducing automatic zooming and
panning on the frame, as well as smoothing the transitions between
shots, thanks to 3D information that relates the content of one video
with another.

3. WHAT IS A 3D INTEREST MAP?
Understanding and predicting user interest is a key issue in many

multimedia applications. In order to efficiently compress, store,
retrieve, transmit, recommend, display any media item, it is helpful
to estimate users’ level of interest in it.

Beyond saliency. In some situations, user interest and atten-
tion are guided by a task to be performed; in other free-viewing
situations, a user may subjectively gaze at most interesting items.
In the latter case, a saliency map associated with an image often
serves as a gaze predictor and can be interpreted as a 2D map with
a type of "interest level" (preferably normalized, between 0 and 1)
assigned to each pixel. Unfortunately 2D saliency models still fall
short of predicting semantically interesting objects perfectly. With
3D content in mind, one can formally define a 3D saliency map
by generalization, and determine saliency at a given 3D voxel by
considering how different a given voxel is from its surroundings in
color, orientation, depth etc. Similar to many 2D saliency models,
this generalized 3D saliency estimation does not integrate any se-
mantics and is a poor interest predictor for a 3D scene like the one
depicted in Figure 2. In this example, a semantic definition of the
interest (in 3D) would probably assign the highest interest level to
the voxels located on the soloist in front of the band, an interme-
diate interest value to voxels located on others musicians, and low
interest to voxels located on the background buildings. We devised
our 3D interest maps with this objective in mind.

Our 3D interest maps are innovative for several reasons. First,
we infer 3D interest information from the multiple view geometry
of simultaneous video recordings: it is an original 3D generaliza-
tion of 2D saliency maps. Indeed, a 3D interest map is richer than
several saliency maps computed from the original video recordings:
as shown later, the correspondences between salient areas seen in
range views are naturally established when re-projecting the com-
ponents of the 3D interest maps. Another important difference with
traditional saliency models is that we do not need to predict where
the spectators would gaze – we can simply observe it. We can see a



user’s camera as a third eye that he focuses towards the parts of the
scene that he is most interested in. Our 3D interest levels are some-
how “crowdsourced” from many videographers and we assume that
the semantically important portions of the scene can be statistically
revealed by analyzing the selected view frustums (originated by
zoom, pan and framing decisions). If many videographers focus
towards “the most interesting” musician (e.g., the soloist) shown in
Figure 2, a bit of semantically motivated interest is revealed.

A formal approach to 3D interest maps. We define a 3D inter-
est map with respect to a given time instant, and hence we consider
a set of J images corresponding to synchronized video frames1

taken from J cameras capturing the same scene from different an-
gles at this instant. We assume that the camera projection matrices
Pj , j = 1..J , with respect to some Euclidean projective represen-
tation, are given.

We also assume that we have the 2D regions of interest (ROI) in
the J range views at our disposal. Note that the simplest user’s ROI
in a view can be drawn from the central fixation assumption [30],
in which it corresponds to an elliptic region centered at the princi-
pal point (i.e., at the point where the optical axis meets the image
plane). Such elliptic regions are shown in blue in Figure 2 for two
cameras. Although this assumption will be relaxed later, it makes
sense as it seems natural that the user tends to shoot by steering the
camera optical axis towards the scene hot spots.

Figure 2: Central focus assumption on the BrassBand dataset.
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Figure 3: Viewing cone back-projecting a 2D ROI (in blue) and
viewing line back-projecting a 2D point (in yellow); see text.

The key ingredient for defining a 3D interest map is the notion
of viewing cones. A viewing cone is the back-projection of a 2D
ROI, i.e., the generalized cone in 3D space that is the assemblage
of 3D lines passing through the camera center and every pixel on
the 2D ROI boundary (see Figure 3). For the k-th elliptic ROI (k =
1..K) in view j, referred to as Ej

k, the corresponding viewing cone
can be defined in the projective 3D space by its order-4 symmetric
homogeneous matrix [13, p199]

Λ(Ej
k) = (Pj)T EjkP

j (1)

1Both the synchronization and the calibration are assumed to be, at
least approximately, available for the J cameras.

where E
j
k is the order-3 symmetric homogeneous matrix of the el-

lipse [13, p30] describing the boundary of Ej
k, and Pj is the pro-

jection matrix of camera j. In the situation illustrated by Figure 2,
we have one elliptic ROI centered in each view with J = K. In
the more general situation, multiple ROIs in a view are allowed (as
explained in the next section).

We now partition the 3D scene into a set of voxels S = {vi}i∈I .
The intersection of viewing cones in 3D (as suggested by Figure 5)
reveals a region where the voxels are seen by many cameras and
can be considered as interesting for that reason. Hence, we can
introduce a measure of interest of a voxel vi by looking at how
often it is seen. If we let E be the set of all 2D ROIs and E(vi) ⊂ E
be a subset that depends on vi, this 3D interest level is related to
the 2D ROIs through the following definition:

Int(vi) =
1

|E|
∑

E∈E(vi)

Vol(Λ(E) ∩ vi)
Vol(vi)

(2)

where Vol(a) stands for the 3D volume of the considered 3D re-
gions in argument a. As the quantity Vol(Λ(E) ∩ vi) computes
the volume of intersection of vi with the viewing cone through E,
the measure (2) is maximum when E(vi) = E and vi is entirely
included in all ROIs of E , giving Int(vi) = 1. It is minimum
when vi is not included in any ROI, giving Int(vi) = 0. The in-
termediate values measure how often a given voxel is partially or
completely seen.

We will say that the measure of interest (2) is (only) geometri-
cally consistent when E(vi) = E and is (both geometrically and)
photometrically consistent when E(vi) ⊂ E is the subset in which
vi is (at least partially) visible. In our context, a voxel vi is said
to be visible with respect to a set of ROIs E ′ ⊂ E if there are pix-
els in each ROI of E ′ such that (i) all their back-projections as 3D
viewing lines cut vi (see Figure 3) and (ii) the neighborhoods of
all these pixels are photometrically consistent in the views. It is
straightforward to compute a geometrically consistent measure of
interest, by intersecting all the cones associated with E ; it is the
information brought by the users that contributed and no sophisti-
cated computer vision algorithm is required. Nevertheless, due to
many inter-voxels occlusions, only a subset of viewing cones as-
sociated with E are really seeing a visible voxel, which motivates
the notion of photometrically consistent measure of interest. In Fig-
ure 6, the red voxel that is located at the intersection of the frustums
of the three cameras is only visible (i.e., not occluded) in one frus-
tum. Even if seen by all cameras, this red voxel is clearly not the
most interesting since in fact only one user is seeing it. The method
to determine E(vi), the subset of 2D ROIs in which vi is visible,
will be tackled in the next section.

At this step, it is natural to consider the distribution of interest
among the voxels through a histogram and subsequently introduce
a normalized interest measure derived from (2) as

Ĩnt(vi) = Int(vi)/
∑
i∈I

Int(vi). (3)

Definition 1 A 3D interest map is the limit form of the 3D his-
togram with voxels as bins (diagonal length ∆l → 0) with respect
to the normalized measure of interest (3).

In other words, if the voxels decrease in size and become infinites-
imally small, the normalized measure of interest (3) behaves like a
continuous probability density function.

Finally, we will model our 3D interest map (in our implementa-
tion and due to its generality) as a 3D Gaussian Mixture Model (3D



GMM) with a satisfying number G of mixed components:

Ĩnt(v) =

G∑
g=1

wgN (v;µg, Σg) (4)

where v is now a 3D point (seen as an infinitesimally small voxel),
N is the 3D Gaussian density, and wg , µg , Σg are the weights and
parameters of the 3D mixture. We detail the estimation of these
parameters in the next section.

A GMM is flexible enough to approximate closely any multi-
modal density of 3D interest. Using GMM, the estimated 3D in-
terest map can also be re-projected in the image spaces to play the
role of J dependent 2D interest maps associated with the J cameras
(see also the right part of the red rectangle in Figure 1).

Figure 4: 2D elliptic ROIs, as computed in Step (1) of our algo-
rithm, on the RagAndFlag dataset.

4. 3D INTEREST MAP COMPUTATION
In this section, we present a method to build a 3D interest map

using several synchronized videos shooting the same scene. The
proposed algorithm (see Algorithm 1) is broken down in two suc-
cessive estimations: a Gaussian mixture is first computed to pro-
duce a geometrically consistent 3D interest map (Steps (1)-(3)).
The intuition behind this first step is to triangulate interesting 3D
regions (Figure 5) from automatically detected 2D regions of inter-
est (Figure 3). At this step, the 3D interest map (i.e., the Gaussian
mixture) is coarse. The map is then refined into a final photomet-
rically consistent one (Steps (4)-(6)). These last steps are made
possible thanks to the constraints brought the coarse intermediate
3D interest map.

Algorithm 1 Computation of a GMM-based 3D interest map.

(1) Compute Kj ellipses of interest Ej
k for each view j

(2) Compute the intersection of visual cones
(3) Estimate a geometrically consistent 3D GMM
(4) Re-project it to get 2D GMM in image spaces
(5) Compute 2D Masks serving as PMVS input
(6) Estimate the final photometrically consistent 3D GMM from
PMVS output

Detection of Ellipses (1). In this step, we look for 2D regions
that are likely to contain interesting objects. These regions will
then be used, as an implementation of Equation 2, to produce the
cones as explained in the previous section. Many algorithms exist
for such a task, from saliency maps to object detectors (face or body
detectors would fit our use case).

At this stage, we do not need a high precision on these ellipses
of interest, since they are primarily a way of reducing the com-
plexity of the following steps. We therefore choose to use off-
the-shelf OpenCV blob tracker, which uses standard algorithms for
foreground detection (we use a temporal window of 15 frames) fol-
lowed by blobs detection and tracking, considering the connected
components of the foreground mask. In other words, we rely mostly

on the apparent motion to detect the ellipses of interest, which is
coherent with our use case of live performances. An example of
the output of this algorithm can be seen on Figure 4. Note that the
detected ellipses are not matched between views.

It is possible that the apparent motion is too low to detect ellipses
based on the previously explained algorithm. In that case, we build
on our assumption that users naturally tend to focus their camera
towards objects of interest. We therefore consider an ellipse of area
Ac centered on the camera frame, as shown on Figure 2. If the
cumulated area of the ellipses of interest detected during Step (1)
of our algorithm is less than Ac/2, then we empirically consider
that there is insufficient apparent motion on the scene and switch to
the central focus assumption.

Intersection of Visual Cones (2). At this stage, only a geometri-
cally consistent 3D interest map can be computed. Indeed, we have
no information about the visibility of a detected 2D ellipse number
k in view j (Ejk in Section 3’s formalism) in other views j′ 6= j. We
use Equation (2) with E(vi) = E for defining a first coarse 3D in-
terest map. In other words, the basic idea is to intersect cone-pairs
Λ(Ejk1

) and Λ(Ej
′

k2
) for all pairs of views (j, j′) and for all pairs of

2D ROIs (Ejk1
, Ej

′

k2
) in these views.

The algorithm for intersecting two visual cones, related to cam-
eras j and j′ and 2D ROIs Ejk1

and E
j′

k2
, is as follows:

1. In image j, generate M random points inside the ellipse
E
j
k1

and back-project each of these points p as a 3D line Ljp,
through p and the camera center.

2. Compute the two intersection points where line Ljp meets the
viewing cone Λ(Ej

′

k2
) associated with image j′. This step can

be achieved very efficiently when formulated with projective
geometry2.

3. If such intersection points exist, discretize the line segment,
whose endpoints are these two points, into T points so that
image j yields MT 3D points.

4. Repeat 1-3 by switching the roles of cameras j and j′.

Now, given a sequence of J views, we can apply the above algo-
rithm for each of the 1

2
J(J − 1) distinct image-pairs and each pair

of detected ellipses that can be formed in the image-pairs. Indeed,
Figure 4 shows a pair of images for which 5 (left image) and 4 el-
lipses were detected, which means that, in this particular example,
20 cones intersections are computed. Note that all cones do not
necessarily intersect, so 20 cones intersections is an upper bound.
The result of this step is a cloud of 3D points with denser regions
where the interest is locally high.

Figure 5 illustrates this step on our BrassBand dataset, for which
there is little movement in the scene. As a consequence, cones are
generated based on the central focus assumption. Thus, there is one
cone per camera. We can see on the figure the 3D points (in blue)
that are generated in the cones intersection.

3D GMM Estimation (3). Based on the obtained 3D data points,
we now estimate the first interest density (a 3D GMM) given by
Equation (4). Since we do not know the number G of Gaussian
modes and we have no initial parameter estimates, we can not rely

2Let x ∈ R3 be the homogeneous vector of an image point x. The
3D line, back-projection of x, can be given by a 3D point function
X : R → R4 defined by X(µ) = ((µx− p4)T M−T , 1)T , using
the projection matrix decomposition P = [M | p4] ([13, p162]). The
line cuts a cone Λ at two points X(µ1) and X(µ2) where µ1 and µ2

are the two real roots of the quadratic polynomial X(µ)T ΛX(µ).



Figure 5: Intersection of visual cones (BrassBand dataset).

on the standard Expectation-Maximization technique for this step.
We use Mean-Shift density estimator [7] that is devised to itera-
tively detect the unknown distribution modes along with the data
points that belong to the cluster associated with each mode. The
hard assignment between data points and modes given by Mean-
Shift then allows us to trivially estimate each weight wg (ratio of
points assigned to the jth cluster vs. total number of data points)
and each parameter: both µg and Σg are estimated with maximum
likelihood formulas.

Mean-Shift clustering is only controlled by one scale parameter:
the bandwidth. Theoretically, the bandwidth compromises between
the bias and variance of the estimator. In practice, it can be under-
stood as the distance allowed between peaks of the distribution. At
the current level (Step (3) in algorithm 1), however, the data points
located at the intersection of the visual cones (see also Figure 5)
do not fit with any recognizable shape (e.g., human performers). It
is discriminative enough to select a relatively large bandwidth to
detect the modes of our first 3D interest map: we typically choose
h = 2m in our experiments.

Re-projection to 2D GMM (4). Using a GMM in 3D allows
the 3D interest maps to be re-projected in the J views. Such re-
projection helps with the visualization and the evaluation of the 3D
interest maps in the experimental section. Figure 9, second row,
shows an example. Note that the 3D multi-modal distribution also
appears as a multi-modal density in 2D. Flandin and Chaumette [10]
define a model providing, for every 3D point of the scene, the prob-
ability that it belongs to an object of interest. They introduce sev-
eral propagating rules for Gaussian uncertainties, such as subspace
projection and back-projection of a distribution from 2D to 3D.
Their fourth rule can be reused in our case to characterize the 2D
GMM in image spaces resulting from the perspective projection of
our 3D interest maps. Modeling the interest with Gaussians allows
us to switch back and forth between 3D and 2D.

PMVS Masks Computation (5). We now aim at making the 3D
interest map more discriminative. As said before, we used Equa-
tion (2) with E(vi) = E , leading to a first coarse estimate. To refine
it, we must determine whether a voxel is visible or not in a view.
In Figure 6, we already noticed (cf. Section 3) that the red voxel
that is located at the intersection of the viewing cones is the most
interesting according to a geometrically consistent measure of in-
terest but it should not be considered as the most interesting with
a photometrically consistent measure: its red color is not occluded
in only one view. The blue voxel is more interesting (seen from
several views with photometrically consistent blue projections). In
our implementation, this consistency is imposed by a constrained
3D reconstruction, achieved efficiently with multi-view stereo soft-
ware such as PMVS [11] that is devised to propagate photometric
consistency.

Given the extreme difficulty of wide-baseline multiple-view cor-
respondences in our set-up, we use the re-projected GMM to pro-
duce 2D masks that will constrain and guide the 3D reconstruction
algorithm. For each image, we binarize the 2D GMM (i.e., the 3D
interest maps re-projection) in order for the mask to contain 95%
of the information from the GMM. Results of this step can be visu-
alized on the third row in Figure 9. As shown in the experiments,
PMVS outputs denser 3D reconstructed points in the most interest-
ing regions (e.g., around the human performers) thanks to the 2D
masks guidance. The role of the “crowdsourced” masks is quanti-
tatively evaluated in Section 6.

Final Estimation from PMVS Output (6). The PMVS soft-
ware takes as input the camera projection matrices along with the
masks computed during the previous step, and outputs a set of re-
constructed 3D points. These points respect the photometric con-
sistency. Note that we need to provide a parameter to PMVS, called
the level, which specifies the resolution at which the input images
will be processed. We set the level to 4, which means the image res-
olution considered is 120× 68. This choice significantly speeds-up
the computation as well as limits the influence of a bad synchro-
nization on the quality of our results. Similarly to Step (4) of the
algorithm, we then estimate the parameters of a 3D GMM to model
the final 3D interest map. In our public event use case, if we ide-
ally aim at estimating a separate mode for each dancer or singer,
the bandwidth for the Mean-Shift clustering should be selected as
h = 60cm to typically separate two humans standing next to each
other. This bandwidth parameter controls the granularity of the 3D
interest map. The re-projection of our refined 3D interest map is
shown on the fourth row in Figure 9.

Figure 6: The red voxel has the highest geometrically consistent
measure of interest (included in the three viewing cones) but a
low photometrically consistent measure (only visible in one).

5. APPLICATION TO VIDEO MASHUP
We now demonstrate the power of 3D interest map, by applying

the information we obtained to video mashups.

5.1 Video Mashup
The goal of video mashup is to automatically create a tempo-

rally continuous video of an event by splicing together different
clips from simultaneously recorded videos of the event, usually
shot from a diverse set of angles. A video mashup system aims to
replace a human director, and therefore a successful video mashup
system should produce videos that are interesting to watch, logi-
cally coherent, and cover the important scene that happens during
the event.

One of the state-of-the-art systems for video mashup is Jiku Di-
rector [21], which focuses on mashing up videos captured with
handheld mobile devices. Jiku Director uses an online algorithm [23]
to produce the mashup, following a shot-change pattern learnt from
professional, human-edited, video. The system also filters out bad
quality videos through simple feature analysis and tries to increase



the diversity of shots in the mashup by not selecting clips from the
same devices when possible.

Jiku Director, however, is limited in two ways. First, it always
uses the video clips recorded by users “as-is” without any cropping
and scaling, nor introducing any camera movement. As a result,
the camera shots in the resulting video are limited to the movement
made by the user while recording the video. Furthermore, since the
videos are recorded by audiences of an event, the shots are most
of type of long/medium shots. The resulting mashup is lacking
in diversity of shot types. Second, when Jiku Director introduces
a cut, its only consideration is the shot angle (viewing direction of
the camera) and shot length (distance of the camera from the stage),
without considering the subjects or narrative.

One way to overcome the first limitation is to analyze salient
features from each video independently and model the importance
of the content. Jiku Director could then introduce virtual camera
movement (zooming effects and dolly shots) by cropping out the
region-of-interests (ROIs) from the videos. This approach is similar
to that adopted by Carlier et al. [5]. This approach, however, could
not overcome the second limitation, as there is no way to associate
an object of interest that appears in one video clip with another
object of interest that appears in another clips.

The proposed 3D interest map allows us to identify such asso-
ciation for objects that appears in the same time instant across two
video clips. Furthermore, using the objects’ bounding boxes and
interest levels, we can add camera movements to pan from one ob-
ject to another, and to zoom in for close-up shots of the objects,
producing better mashups. The rest of this section describes how
we apply 3D interest map to a new video mashup algorithm.

5.2 Computing Bounding Boxes
The first step of our mashup algorithm is to compute bounding

boxes that contains the most interesting regions of the videos. Since
our 3D interest maps are modeled by GMM, one bounding box for
each Gaussian in the mixture can be produced easily.

The mashup application, however, needs stable bounding boxes
that are tracked over time. The algorithm described in Section 4,
however, applies at every time instant without considering temporal
consistency. Therefore, to produce bounding boxes for the mashup
applications, we change the last step of our algorithm (clustering a
3D point cloud) and compute the bounding boxes in the 4D space
(3D and time). We augment the 3D points with a fourth coordinate
that corresponds to their frame index, and apply the Mean-Shift
algorithm to this 4D point cloud. We compute a bounding box
for each cluster that contains all points of the cluster for its entire
duration. The bounding boxes are stable over time by construction
and can be mapped in all videos. An example of this output can be
seen on Figure 7. Note that all bounding boxes are constrained to
be of the same aspect ratio as the original video.

Figure 7: Bounding boxes computed from our 3D interest
maps. Bounding boxes of the same color are corresponding to
the same object of interest.

5.3 Mashup Heuristics

With the set of bounding boxes, we now present a simple algo-
rithm for video mashups to illustrate the power of 3D interest map.

Note that 3D interest map cannot be computed online, but as
we will later compare our results with Jiku Director’s, which is
an online algorithm, we choose to design our mashup algorithm to
be online as well, with no knowledge of future frames beyond the
current selected shots.

Our algorithm takes, as input, the set of object of interests com-
puted from 3D interest map. For each object appearing in each
frame, we have its bounding box, x-y coordinate and depth of its
centroid in each frame. The output of our algorithm will be a se-
quence of shots (t, j, B, m), where t is the beginning time of the
shot, j is the camera to choose the shot from,B is the set of regions
of interest to use in this shot, andm is the virtual camera movement
in this shot.

We use the same decision matrix used by Jiku Director to decide
Camera j in each shot. Once j is fixed, we determine t, B, and
m as follows. We first define a scene as a sequence of shots with
logical coherence. For instance, a scene can start with a wide angle
shot, followed by a zoom in shot to an object x, followed by a close
up shot of x. We limit the length of the scene to containing no more
than Ns shots (we use Ns = 3).

To determine the current shot starting at time t, the algorithm
first needs to decide if the current shot belongs to the same scene as
previous shot, or starts a new scene. If current scene has reached its
limit in number of shots, we simply start a new scene. Otherwise,
we try to see if the current shot fits.

LetLmax be the maximum possible shot length (we useLmax =
7s). To determine the current shot, we look at the bounding boxes
and objects for the next Lmax time in the video shot by camera j.

We prioritize the bounding box of each object by their impor-
tance in the scene. Each object i has a camera independent im-
portance, I(i, t), which is computed from

∑
j v

j
i (t)/dji (t), where

vji (t) is 1 if object i appears in Camera j at time t; 0 otherwise, and
dji (t) is the depth of the object i from the camera plane of camera
j at time t, normalized to 0 and 1. The intuition here is that an ob-
ject that appears frequently in the collective video clips and closer
to the camera is the more important than those that appears fewer
number of times/far away from cameras.

In each video clip, we compute the camera dependent impor-
tance of an object, Ij(i, t) as I(i, t)/dji (t). The importance of the
bounding box is then the sum of the camera dependent importance
of all objects in the bounding box. Note that even though each
bounding box is associated with an object, other objects may ap-
pear in the bounding box. Naturally, a bounding box that includes
multiple important objects becomes important.

Now, we look at the most important bounding boxes in j at each
time instance for the next Lmax seconds. If at the start of the Lmax

seconds, the same bounding boxes is used as the previous shot, we
fit the current shot into the same scene, and set B to these bound-
ing boxes. We may stop the current shot at the time when these
bounding boxes disappear. If a bounding box different from that
of previous shot become the most important, we introduce a new
scene, setting B to the new most important bounding box.

It remains to determine m for the current shot. The choice of m
can be either: wide angle shot, close up, move the camera (zoom
in, zoom out, or pan). The algorithm follows the following princi-
ples: (i) there should not be frequent camera movement, and (ii) the
choice of m should lead to “fluid” shots: two consecutive close up
shots should have the same object; zooming into an object should
be followed by either a close up shot that include that object or a
pan shot moving from that object to something else; a zoom out
shot should be followed by a wide-angle shot; and a pan shot mov-



ing from an source object to a target object should be followed by
a zoom out shot from the target, or a close up shot of the target. In
Figure 8, a video transition from our heuristics illustrates how the
3D informations can be used for continuity editing.

Figure 8: A video transition keeping the same object(s) of in-
terest in focus between two successive shots from two different
cameras.

6. EXPERIMENTS
To evaluate our proposed 3D interest maps and its application to

video mashup system, we first introduce two useful datasets and
briefly explain our experimental set-up. The interest maps obtained
from our experiments are then compared against saliency maps in
the 2D image space (a comparison in 3D is difficult to visualize).
Finally, we report the major results from our study to evaluate our
improvements to video mashups.

6.1 Dataset
We present, in this subsection, the data we have worked on and

that we use to evaluate our approach.
RagAndFlag. This dataset consists of videos filmed with seven

cameras simultaneously (see Figure 1). This dataset presents a
challenging scenario where the cameras have very diverse view-
ing angles and the videos depict a highly dynamic outdoor scene
with variable lightning and about 50 moving objects (dancers, see
also [22]). We use this dataset to test our mashup application.

BrassBand. This dataset depicts a more static scene with eight
musicians close to each other, moving occasionally. Seven cameras
are spread around the scene: three are fixed on a tripod and four are
handheld (shot with smartphones) with little movement.

6.2 3D Interest Map
In this section, we evaluate the accuracy of the reconstructed 3D

interest maps.
Our experiments use a radius of one fifth of the focal length to

produce the cones-based 3D interest map. The parameters M and
T are set to 10. We calibrate the cameras for each dataset using spe-
cific patterns (orange squares in RagAndFlag, concentric circles in
BrassBand) on the planar stages. Knowing the plane-to-image ho-
mography associated with a given plane in the scene, we can (un-
der standard assumptions of square pixels and centered principal
point) compute the focal length [13] and then the camera pose [27].
The average re-projection error of our calibration is 2.2 pixels on
1920×1080 images, which is acceptable for our application. We
synchronize the videos using an algorithm from Shrestha et. al [16]
and observe an average error of 7.25 frames (0.25 sec).

Figure 9 shows examples of our results on the RagAndFlag
dataset. In this figure, original images are introduced in the top
row; the output of Steps (1)-(3) from our algorithm (i.e., a geomet-
rically consistent version of the 3D interest maps computed from
the cones intersection) is shown in the second row. This version
will be referred as cones maps in the following paragraphs. The
third row shows the masks that are inferred from the cones maps,
as described in Step (4) of our algorithm. The forth row shows
the final output of our algorithm, the 3D interest maps. We man-
ually created ground truth masks to evaluate the 3D interest maps,

Figure 10: Results on the BrassBand dataset. For each row,
from top to bottom: (i) original images; (ii) our 3D interest
maps; (iii) manually generated ground truth binary masks;
and (iv) state-of-the-art saliency map, as computed by Gofer-
man [12].

and these ground truth masks are exposed on the fifth row. Finally
results from a state-of-the-art saliency algorithm by Goferman et.
al [12] are shown on the sixth row.

Similar results are presented for BrassBand in Figure 10. Due
to space limitations, we only present original images, our final 3D
interest maps, Goferman saliency, and the ground truth masks in
these figures.

We can observe on all these figures that our 3D interest maps are
very precise: almost all regions that are highlighted as salient are
recognized as part of some objects of interest.

We can see also on Figure 9 that cones maps (2nd row) are more
precise than Goferman’s saliency maps (last row). This is the rea-
son why we do not simply binarize state-of-the-art saliency maps
to produce the 2D masks. Though the recall from saliency maps is
quite high, the precision is insufficient to efficiently serve as a mask
for PMVS.

In order to quantitatively evaluate our results, we follow the method-
ology from [4] and estimate a precision-recall (PR) curve by vary-
ing a threshold on the interest values and generating a binary saliency
map for each value of the threshold. These experiments have been
conducted on four types of interest maps: our final 3D interest
maps, Goferman saliency, cones maps (see above) and a version
of our interest maps we call No Masks. No Masks is computed
by applying the PMVS algorithm to our data without inputting the
masks based on the cones intersection, and estimating 3D interest
maps from the set of points obtained from PMVS. We evaluate this
version to prove the importance of Steps (1) to (5) in our algorithm.

We created ground truth masks for 12 instants in our datasets,
and resulting PR curves are displayed in Figure 11. Our 3D interest



Figure 9: Results on the RagAndFlag dataset. For each row, from top to bottom: (i) original images; (ii) re-projected 3D interest
maps computed by intersecting viewpoint frustums (cones maps); (iii) masks used as an input to PMVS; (iv) our final results; (v)
manually generated ground truth binary masks; and (vi) state-of-the-art saliency map, computed using Goferman’s method [12]

Figure 11: Averaged precision-recall curves on RagAndFlag
(left) and BrassBand (right)

maps spectacularly outperforms Goferman’s algorithm on the Ra-
gAndFlag dataset, which can be explained by the small size of the
regions of interest (see Figure 1: the crowd is far from the scene)
and the high variety in contrast of many background elements (the
mat, the buildings, etc.). Our 3D interest maps is also better than
Goferman in the BrassBand dataset, but the saliency detection is
more performant in this case. Indeed the objects of interest are very

salient in the images from BrassBand, since most of the musicians
are wearing red colors.

Results on cones and no masks are also not as good as our 3D
interest maps, which validates the importance of both steps in our
approach. It is interesting, however, to note that cones maps is more
precise than Goferman on the curves. This validates our choice to
use cones maps to compute the PMVS masks (Step (5) in our al-
gorithm) instead of just using a saliency map, because the more
precise the masks are, the less noisy the reconstructed points are,
and therefore the more precise our 3D interest maps are. In addi-
tion, it takes less than a second to compute cones maps whereas
Goferman’s saliency takes 5 seconds per image on GPU.

6.3 Evaluation of Mashup Algorithm
We now present the methodology and results of our user study to

evaluate the video mashups produced from our algorithm.
Dataset. We pick the Rag&Flag dataset as the input to our al-

gorithm, as it has the most dynamic content. We use a 1-minute



Figure 12: Average responses of the users for the three scenarios: NoVC vs. 2D-VC, NoVC vs. 3D-VC and 2D-VC vs. 3D-VC

sequence from the 7-minute video, to limit the length of the user
study, and let users be able to watch the videos several times.

Benchmark. We choose to compare our output with two other
methods. The first is the output from the MoviMash algorithm [23].
As MoviMash does not generate virtual camera movements, we
denoted the output from this video as NoVC. We also included
the output from a version of our algorithm that makes use of 2D
saliency maps to generate zoom and pan shots [20]. We use the
same saliency detector than the one from step (1) in algorithm 1,
by consistency. We track the obtained ROIs with the same tech-
nique than the one from paragraph 5.2 except that it is applied in
reduced (2D and time) dimension. The difference between this 2D
version and ours is that: (i) the saliency information is computed
for each video individually (without considering 3D scene infor-
mation from other videos), and (ii) no interest information across
different videos is available. We denoted the output from this video
as 2D-VC. The output from our algorithm using 3D interest map
is denoted as 3D-VC. Note that the three versions NoVC, 2D-VC,
3D-VC can be downloaded as supplemental material.

Users. We recruited 30 users (10 female, 20 male, age between
21-43) to participate in the user studies. All users have limited
experience with video editing and production except for one.

Methodology. The user study is conducted online. Users are
presented with the instructions and are told that “the main purpose
of the user study is to rate the videos according to the quality of
video editing”. We created two Web pages for our purpose, each
of them displaying two videos. On one of the page, NoVC is dis-
played along with either 2D-VC or 3D-VC (the choice is random).
On the other page, 2D-VC, and 3D-VC are displayed. The order
of display of the videos is random on both Web pages, to elimi-
nate bias. The users are allowed to replay the video as many times
as they want. A list of rating criteria are presented to the user be-
low the video, where they are asked to rate the videos with a rating
from 1 (worst) to 5 (best) according to the criteria of (i) the quality
of video editing, (ii) the choice of camera shot, (iii) the interest-
ingness of the video, and (iv) the likelihood that the user would
recommend the video to a friend.

Results. The average responses of the users, along with their
95% confidence interval, are plotted in Figure 12.

The first result that is very clear is that users prefer the versions
with virtual camera movements (2D-VC, 3D-VC) rather than the
output from MoviMash (NoVC). The choice of camera shot (ii)
is the criteria where the difference is the most obvious, which is
understandable as variety in the choice of shots makes the video
more enjoyable to watch.

The interestingness of the video (iii), meaning the capacity of a
video to display the interesting subjects in a scene, is also signif-
icantly higher in 3D-VC than in NoVC. This proves that the 3D
interest maps indeed help the mashup algorithm displaying the in-
teresting regions in the videos. Note that 2D-VC also outperforms

NoVC with respect to this criterion but that the difference is less
significant. Indeed since the 2D interest maps used to compute this
version are mostly based on apparent motion, the 2D-VC mashup
has often multiple choices of moving regions to display and does
not necessarily focus on the prominent region of interest. The right
diagram of figure 12 seems to indicate that 3D-VC performs bet-
ter than 2D-VC, however the results can not be proven statistically
significant. Indeed, to non-expert users, the two videos can look
similar because the shots dynamics are the same (zoom in, zoom
out, pan).

Figure 13: Second user study (99% confidence intervals)

Therefore we conducted another, much shorter, user study. We
asked a different pool of 45 users to look at three pairs of very short
videos, each depicting a transition between 2 shots (e.g. figure 8).
Each pair consisted in the transition computed by 3D-VC and by
2D-VC. We displayed the three pairs in random order, and asked
users which transition they preferred. Unlike the results presented
in figure 12, this study allows us to clearly (statistically signifi-
cantly) state that the transitions based on the 3D interest maps are
better than the ones based on the 2D interest maps (see figure 13).

7. DISCUSSION AND CONCLUSION
This paper introduces 3D interest maps, a new concept that as-

sociates each 3D point in a scene with its level of interest and can
be viewed as extension of saliency maps to 3D. We formally de-
fine a 3D interest map and explain how we compute it. We show
that our 3D interest maps are more precise in locating interesting
objects than state-of-the-art saliency algorithms. A key aspect of
our 3D interest maps is that they allow mapping of interesting re-
gions across different videos that depict the same scene at the same
time instance. This property is useful for many applications, such
as video mashup systems.

The main challenges and limitations of our work are obviously
the strong assumptions about estimation of the camera poses and
synchronization between them. In our experiments, cameras were
calibrated from a single view in order to avoid matching features



between views, as we benefited from the existence of geometric
patterns lying on the stage ground. In many man-made environ-
ments, it might be worthwhile to calibrate the camera by automati-
cally detecting vanishing points corresponding to orthogonal direc-
tions [8, 29]. Multiple tags and projected patterns (e.g., multiple
tags or projections on the walls behind the stage) [19] also have
clear potentials for solving this problem. Alternatively, we may
also rethink our work following uncalibrated approaches. The au-
thors of [1] exploit sparse feature flows in-between neighbouring
images/cameras and structure these visual data using distances and
angles. In our case, the idea would be to replace the 3D space where
interest levels are estimated with descriptor spaces where relation-
ships between videos crowd-sourced from different cameras could
also be established.

Regarding future work, we are convinced, among other authors,
that calibration might become a real-time commodity using both
the smartphone cameras and inertial measurement units (IMU) as
well as, in the very near future, depth sensors (e.g., as in Google’s
Project Tango). In any of the above-mentioned approaches, some
information from the IMU (namely the gravity vector) and Exif
data (namely the focal length) can be very helpful, as it can basi-
cally provide the vanishing point of the vertical direction or, equiv-
alently, the vanishing line of the ground plane [18]. In some recent
work [28], an inertial tracker provides camera poses which are sub-
sequently refined by visual tracking. And last but not least, pose
estimation by relocalization [24] form another promising, yet still
challenging, paradigm.

3D interest maps is built from video clips filmed by users, where
the interest levels of the scene emerges naturally from the users’
shot framing. The quality of the interest map can only be improved
with more videos.
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