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ABSTRACT
This paper introduces a new paradigm for interacting with
zoomable video. Our interaction technique reduces the number of
zooms and pans required by providing recommended viewports to
the users, and replaces multiple zoom and pan actions with a simple
click on the recommended viewport. The usefulness of our tech-
nique is visible in the quality of the recommended viewport, which
needs to match the user intention, track movement in the scene, and
properly frame the scene in the video. To this end, we propose a hy-
brid method where content analysis is complimented by the implicit
feedback of a community of users in order to recommend view-
ports. We first compute preliminary sets of recommended view-
ports by analyzing the content of the video. These viewports allow
tracking of moving objects in the scene, and are framed without
violating basic aesthetic rules. To improve the relevance of the rec-
ommended viewports, we collect viewing statistics as users view a
video, and use the viewports they select to reinforce the importance
of certain recommendations and penalize others. New recommen-
dations that are not previously recognized by content analysis may
also emerge. The resulting recommended viewports converge to-
wards the regions in the video that are relevant to users. A user
study involving 70 participants shows that an user interface incor-
porating with our paradigm leads to more number of zooms, into
more informative regions with fewer interactions.

Categories and Subject Descriptors: H.5.1 [Multimedia Infor-
mation Systems]: Video

General Terms: Algorithms, Human Factors, Design

Keywords: Interaction Techniques, Zoomable Video, Content-
Analysis, Crowdsourcing

1. INTRODUCTION
Advances in video compression, video processing algorithms,

and video sensors have lead to video cameras that are capable of
capturing high resolution videos. Ability to capture HD video (at
1920× 1080) is commonly available in mobile phones and hand-
held cameras now. Video sequences, of resolution as high as
7,680×4,320 (UHDTV) have been recorded and transmitted over
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the Internet1. Video playback, however, is still limited in resolu-
tion, due to screen constraints (e.g., on mobile devices) or band-
width constraints (e.g., when streamed over the Internet). As a re-
sult, high resolution videos are typically scaled down before trans-
mission or playback, leading to a loss in information.

Zoomable videos have recently been proposed as a new form of
media [?] with zooming and panning as two new ways for users to
interact with the video. A zoomable video allows an user to zoom
into a selected region in the video, leading to a high resolution ver-
sion of the region to be displayed. The user essentially views the
video through a viewport that defines a rectangular region in the
high resolution video from which the displayed video is cropped.
While zooming in, users can pan (i.e., scroll) around by moving
the viewport to view different regions in the video. Such zoom and
pan ability is useful for many types of videos, including classroom
lectures, stage performance and sports video.

Ngo et. al [?] have proposed a user interface to interact with a
zoomable video, based on a design similar to commonly used im-
age zooming tools such as Google Maps. To zoom in and out, users
can either scroll up and down with the scroll wheel of the mouse, or
use the + and − buttons on the interface/keyboard. To pan, users
can either drag the video with the mouse, or use the arrow keys on
the interface/keyboard. A study of the interfaces [?] has shown that
users interact frequently with the video during playback, with 70%
of the interactions occurring within 1.6 seconds of each other.

Such user interaction was originally designed for images, where
the content is static. Applying it to video, where the content is
dynamic, raises several issues. Users typically zoom in to view one
or more objects of interest in higher detail. In a video, these objects
of interest can move over time. As a result, it is hard for users to
position the viewport around an object that is moving. Furthermore,
the user can loose track of the object of interest when the object
moves out of the viewport. For instance, a user might zoom into
a sports video clip to view the activity of a player in more detail.
If the player moves rapidly, the user would need to quickly pan or
zoom out to track the person.

The goal of this research is to propose a new user interaction
technique for zooming and panning in a zoomable video, designed
with moving content in mind. The new interaction should be simple
and intuitive, and users should be able to zoom and pan to view their
object of interest easily with few interactions.

Our idea is to recognize the possible objects of interest in the
video, and highlight them in a non-intrusive. These highlighted
regions are then presented to the users as the recommended view-
ports. When users hover the mouse over any of the recommended
viewports, a semi-transparent white overlay will appear, indicat-
ing the recommended viewport. Users can click once anywhere in

1http://www.bbc.co.uk/news/technology-11436939



the recommended viewport to zoom and pan into the recommended
viewport. Users can still click anywhere outside the recommended
viewport to zoom in. At any time, users can drag to move the view-
port and right click to zoom out. Note that we replaced mouse
wheel scrolling in [?] with clicks, since clicking is a more natural
action for selecting a recommended viewport.

The new interaction which we propose is the ability to click on
the recommended viewport, there by replacing the action of zoom-
ing in and positioning the viewport over the objects of interest (i.e.,
scrolling and dragging) with a single mouse click.

The recommended viewports serve several purposes. First, it
moves along with the detected object of interest, thus making it
easy for users to position the viewport over a moving object. If
the user’s viewport is the recommended viewport, the user’s view-
port would also move as the recommended viewport moves. As a
result, the video pans automatically to track the moving object, fur-
ther reducing the number of interactions required from the users.
Second, the recommended viewport can provide a guide for the
user to frame their viewport properly, i.e., in a way that does not
violate basic aesthetic principles (e.g., cropping a person’s head),
leading to more pleasant viewing experience.

The key to the efficacy of our approach is the quality of recom-
mended viewports. Viewports should highlight and track interest-
ing and relevant regions in the video and frame them properly. The
research challenge, that we address in this paper, is to automati-
cally compute the recommended viewport given a video. The com-
puter vision research community has studied this domain for many
years, and many algorithms exist to detect and track foreground ob-
jects, faces, human body, etc, by analyzing the content of the video.
While the research community has made significant progress, most
of these algorithms work at the “syntax level” of the video content.
What the users find interesting, however, depends on the semantic
of the video, the purpose of the video, and the intention of the users.
It is difficult, therefore, to determine the object of interest just by
analyzing the video content using the existing algorithms.

Carlier et. al. [?] have recently proposed a crowdsourced ap-
proach to identify the regions of interest in a video. By learning
from the viewing patterns of the users (which regions of interest
are more popular), they proposed a technique that can produce a re-
targeted video which highlights the regions of interest to the users.
This technique exploits human ability to recognize the semantic of
the video and is able to learn the regions of interest from the most
common intention of the users. Their system, however, collects
user traces based on the user interface described by Ngo et al [?]
and therefore suffers from the same issues as discussed earlier. In
particular, the need for users to pan and track an object of interest
introduces delay in identifying a moving object as the region of in-
terest. For instance, in the re-targeted video produced2, which fol-
lows the behavior of most users, an object of interest can move out
of frame momentarily, and only moves back into the frame when
users react to this event by panning to move the objects back into
their viewport. Another drawback of crowdsourcing is that, even
though the inputs into the crowdsourcing algorithm matches the
semantics identified by the users, the process of combining users
intention to produce a region of interest is blind to the content of
the video and might violate the basic aesthetic rules.

Our interface adopts a hybrid approach that plays on the strength
of both content analysis and implicit feedback from a community
of users. We refer to the process of obtaining this implicit feedback
from a user population as, "crowdsourcing", as defined by piggy-
back crowdsourcing systems [?].

2http://www.youtube.com/user/autozap

We bootstrap the recommended viewports as follows. First, we
analyze the content of the video and identify salient regions using
motion, faces, and saliency features. These salient regions are rec-
ommended to users viewing the video using our interface. Then, we
learn which viewports are chosen by the users to view the video,
and adapt the recommended viewports to match the intention of
most users. By combining both content analysis and crowdsourc-
ing, we are able to recommend properly framed regions of interest
that match better with user intention.

In summary, our proposed technique to interact with a zoomable
video fuses regions of interest identified from content analysis with
regions chosen implicitly by previous users, in order to recommend
viewports to new users. These recommended viewports guide
user’s viewport placement, tracks moving objects of interests, and
thus leads to fewer interactions. Further, the recommended view-
ports have few violations of basic aesthetic rules and show content
that is more relevant to users.

1.1 Example
We illustrate our new interaction technique with an example.

Figure ?? shows eight snapshots from our user interface. In the
snapshot at time 0:01 (top left), you can see a semi-transparent
white rectangle overlayed on the video where the mouse is hov-
ering, indicating the recommended viewport. If the user clicks
anywhere within the recommended viewport, the video zooms in,
placing the viewport over the recommended ones (time 0:03). Rec-
ommendation at further zoom levels becomes available. The user
right clicks to zoom out (time 0:10). The new recommended view-
port tracks the person in orange sweater as he enters the scene, from
time 0:10 to 0:12. The user may also click on the video outside of
recommended viewport, as seen in rest of the snapshots.

Figure 1: Our Zoomable Interface



1.2 Approach Overview
Having briefly described the general idea of recommending

viewports, we now give an overview of our approach to compute
the recommended viewports.

Figure ?? illustrates the steps taken. We start with a given video.
In Step 1, we analyze the content of the video to extract the salient
features of each frame. An importance map is built for each frame,
indicating the level of saliency in each pixel. The output of Step
1 in Figure ?? shows an example importance map. In Step 2, we
cluster the pixels in the importance map. The clusters are analyzed
across consecutive frames, and the best viewport trajectory is com-
puted. This viewport trajectory is used as a recommendation, and
is integrated into the user interface.

As users use our interface to watch videos (Step 3), we collect
information about the viewports chosen by the users. In Step 4, this
information is used to generate an interest map, indicating the level
of interest users have on each pixel. The interest map is combined
with the importance map (Step 5) to generate a new importance
map. In Step 6, we repeat what we do in Step 2, with the new im-
portance map. New recommended viewports are shown to the users
(Step 7). Steps 4–7 can be repeated by periodically recomputing the
new recommended viewports to adapt to new user interests if any.

1.3 Organization
We organize the rest of the paper into six sections. We begin

with a review of literature in Section ??, followed by a descrip-
tion of zoomable video in Section ??. In Section ??, we explain
how we analyze the content of the video to find the initial recom-
mended viewports (Step 1 and Step 2). Section ?? explains how
we crowdsource the interesting regions from users, and combine it
to generate new recommended viewports (Step 4 and Step 5). In
Section ??, we present our results. Finally, we conclude in Section
??.

2. RELATED WORK
We now discuss related research in the literature and contrast our

work with the existing work. We divide existing research into three
classes: (i) those that enables new video access and interactions us-
ing content analysis, (ii) those that exploit user interactions to learn
about the content, and (iii) those that combines both content anal-
ysis and user behaviour analysis to learn about content and enable
new video access and interactions techniques.

Enabling New Interactions with Content Analysis. Analysis
of video content to detect and track objects is highlighted by Gold-
man et al. [?] as enabler for new interaction paradigms to browse
and manipulate video. Examples given include dynamic video an-
notation and video navigation by direct manipulation. Direct ma-
nipulation, also discussed by Dragicevic et al. [?], allows control
of video playback and access of nearby frames by directly click-
ing and dragging on moving objects in the image space. Content
nalysis also enables hypervideo links [?], where links associated to
moving video objects allows a quick access to additional content.

Many new interactions are made possible by ROI detection, a
fundamental problem in content analysis. ROI are commonly de-
tected using visual attention models. The work by Han et al. [?]
and Itti et al. [?] are representative in ROI detection on still im-
ages. ROI detection can be extended to the temporal dimension: to
look for interesting space-time regions within a video. Detection of
interesting or important video segment (or shot) enables new video
interactions such as those proposed in the smart player [?]. The
smart player adjusts the video playback speed based on a predicted
level of interest for each video shots. Both inter-frame motion es-

timations and shot boundary detections are used to support auto-
mated fast-forwarding during less interesting shots.

Improving the viewing experience is also the ultimate goal of
numerous works on image and video retargeting. Rubinstein et al.
have identified video cropping as one of the most basic retargeting
operator, despite many recent new proposals [?]. El-Alfy et al. uses
motion analysis in a video and crops the region with high motion
energe for display on a surveillance wall, resulting in zooming and
panning effect over time [?]. Liu and Gleicher [?], in their influ-
encial work, linearly combine multiple saliency features to extract
prominent regions from an image for video retargeting.

Our work is similar to these previous work. We all rely on video
content analysis to identify interesting regions from the video. As
mentioned, however, content analysis alone can fail to identify
regions relevant to users’ intention, since content analysis is of-
ten done using low-level information without user context. Exist-
ing work that works well often assume a certain context and pre-
determined user intention (e.g., El-Alfy et al. works in the context
of surveillance video where motion is important). In contrast, our
work aims to target a wide range of applications.

Enhancing Content Understanding Through Usage Analysis
An alternative approach to content-based ROI detection is to ob-

serve what the users are looking at and which video object are they
clicking on. By collection usage pattern from the users, we can
infer the regions in the video that users are most interested in.

In the context of ROI detection in images, Xie et al. [?] found
that on small mobile displays, users tend to zoom and scroll more
often to view interesting regions in detail. These user actions yield
user interest maps, which are used to extract ROIs from the image.

In the context of ROI detection in video, Ukita et. al uses an
eye-mark recorder system to track user gaze. Important objects, in-
cluding moving objects, can be detected and tracked by analyzing
the gaze of the users [?]. Shamma et. al proposed a similar ap-
proach: to gather information about what is being watched from a
user community to understand the content of the video [?]. Syeda-
Mahmood and Ponceleon collect implicit feedback from the users
by analyzing the playback interaction in the temporal domain (play,
fast-forward, pause) and use it to infer the most interesting video
segments from the video [?].

Carlier et al. use a zoomable video interface [?] to crowdsource
ROIs from users. The detected ROIs are used to create a retargeted
version of the video that would automatically pan and zoom.

Our work is similar in spirit with these existing work, especially
Syeda-Mahmood and Ponceleon’s [?] and Carlier et al.’s [?]. Sim-
ilar to their approach, we use implicit feedback from users to iden-
tify interesting regions. Our work, however, addresses the unique
challenge of tracking moving objects using users’ feedback, and
proper framing of regions around objects.

Combining Content and Usage Analysis Given the strengths
and weaknesses of content and usage analysis, it is natural to com-
bine both, as they can complement each other. This technique,
however, is not well explored by the research community. Besides
our work, presented in this paper, the only other related work we are
aware of is the smart player [?], which adapts the playback speed
from both the visual richness of the scene (estimated from content
analysis) and the user preferences (learnt from their video interac-
tion). The player uses implicit feedback and learns how the users
change and override automatically recommended fast-forwards.

Unlike the smart player, which focuses on interaction in the tem-
poral domain (play and fast forward), our work focuses on interac-
tion in the spatial domain (zoom and pan), detecting of interesting
regions to recommend is therefore more challenging.
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Figure 2: Overview of Approach

3. ZOOMABLE VIDEO
This section gives an introduction to zoomable video and the no-

tion of recommended viewport. We describe how a user would in-
teract with the zoomable video using recommended viewport, and
defer the discussion of how the recommended viewport is com-
puted to the next section.

Zoomable video is a term coined by Ngo et. al [?] to refer a
video that is encoded and stored at multiple resolutions and sup-
ports dynamic cropping and random access into the spatial region
in the video. Besides normal operation in the temporal dimension
such as play, pause, fast forward, a zoomable video supports two
new types of operation: zoom and pan. Users view a zoomable
video with a display size that is smaller than the maximum reso-
lution of the video. Zooming allows users to magnify a selected
region in the video without loss of resolution (up to a maximum
zoom level) and panning allows user to move the zoomed in region
spatially around the video. Zooming and panning can occur even
when the video is playing.

Zoomable videos are very helpful in situations where display de-
vices are computationally constrained by the ability to decode and
render high resolution video. Zoomable videos are also useful in
cases where devices have access to streamed video over a low band-
width network interface, resulting in the inability to stream band-
width intensive high resolution video. Traditionally, computational
and bandwidth constraints have been handled by scaling down the
video temporally, spatially and in quality. Such an approach would
result in loss of information, despite the fact that the capture devices
were able to record the video at very high resolution. Zoomable
video provides an alternative where users can select regions of in-
terest from a low resolution video and view these regions at higher
resolution. Such a scheme can satisfy both bandwidth and compu-
tational constraints in a more scalable fashion.

A zoomable video system can be built using a bit-stream switch-
ing architecture. The high resolution video is encoded at multiple
low resolutions. The lowest resolution video is first accessed and
displayed to the user. When a user wishes to view a specific region
at a higher resolution, user’s intent is represented as a rectangular
viewport. This viewport is first mapped to a higher resolution layer.
Then a region corresponding to the specified viewport is cropped
from the higher resolution layer, and presented to the user. As is
evident, the key requirement is the ability for dynamic cropping,
which can be a challenge in encoded video. Methods to handle dy-
namic cropping and other issues related to streaming of zoomable
video have been presented in [?].

3.1 Recommended Viewport

A key feature in our proposed interaction is the recommended
viewport, which corresponds to interesting objects or events in the
video, and is a region in the video that the user is likely to zoom
into. Hovering the mouse over a recommended viewport reveals a
white semi-transparent rectangular box. The user can zoom into the
region by left-clicking the recommended viewport with the mouse
button. When the mouse cursor hovers over one or more recom-
mended viewports that overlap, only the most important recom-
mended viewport is shown.

Users can left click outside of a recommended viewport to zoom
in. In this case, the new viewport of the user is placed such that the
center of the viewport is the coordinate of the mouse click. Right-
clicking anywhere of the video zooms out.

The recommended viewport automatically moves to track a mov-
ing object of interest. If the user’s current viewport is one that
matches the recommended viewport (by clicking inside a recom-
mended viewport), the user viewport pans automatically along with
the recommended viewport.

One design decision we make is to limit the number of recom-
mended viewports per zoom level to three. While using recom-
mended viewport helps users to place their viewport easily with a
single mouse click, it also restricts the viewport placement. Pre-
senting too many recommended viewports to the users is not only
too inflexible, but can also be confusing. We choose the value of
three since we observe that in a typical video there are rarely more
than three events of interest at the same time. Of course, this num-
ber can be configured to be higher depending on the content.

3.2 Implementation
We implemented our interface on a Web browser using HTML5.

The webpage is minimalist in design, and shows only a video can-
vas of size 320× 180 and a play/pause button along with the cur-
rent playback time. Videos of resolution 1920× 1080 are loaded
along with a JSON file that contains the recommended viewports.
A Javascript crops and scale the video for display in the canvas,
as well as highlights the recommended viewport according to the
JSON file (when hovered by the mouse).

A critical ingredient to the success of our approach is the quality
of the recommended viewports. In the next two sections, we detail
how we combine content analysis and crowdsourcing to compute
the recommended viewports.

4. CONTENT-BASED ANALYSIS
The recommended viewports are determined based on a se-

quence of content analysis steps. We use saliency, and motion in
the frame as the two main criteria to determine the possible regions
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Figure 3: Content Analysis

of interest (ROI), which then serve as the recommended viewports.
In cases where a face can be detected, face position is used as an ad-
ditional criterion. Saliency is determined using the visual saliency
features described in [?]. These features have shown good results
for human detection, and hence the saliency is biased towards the
presence of human or human-like objects in the video. Figure ??
shows an example saliency map.

Motion saliency is based on a moving average of frame differ-
ences and is similar to the work in [?]. A single channel disparity
image of two successive frames is added to a moving average and
used in place of the current frame. As a result the long-term mo-
tion pattern is available in a single frame. Figure ?? shows what a
motion saliency map looks like.

Face detection, for both frontal and profile faces, is done using
the Viola-Jones face detector [?]. We track faces across frames
using a hue histogram of the detected face, with the CAMShift al-
gorithm. Figure ?? shows the result of face detection.

4.1 Importance Maps
Each video frame is now represented by three maps, one for each

criteria mentioned above. The pixel values are single channel quan-
tities ranging between 0 and 1. The frames representing the three
criteria are linearly combined to give an importance map I.

The weights assigned for linear combination may be obtained
in many ways. In our experiments, we use empirically derived
weights 0.7 for motion, 0.2 for saliency, and 0.1 for faces.

4.2 Clustering of Important Regions
The next step is to cluster pixel elements in the importance map

to reveal regions that are candidate ROIs. The pixel elements in
the importance map of every image are selected based on a thresh-
old. Selected pixels are clustered using Mean-Shift ([?]) cluster-
ing algorithm. We chose a 60 pixels bandwidth in our implemen-
tation since it allows to detect significantly different viewports in
1920× 1080 videos. Once clustering is performed, the candidate
ROIs are determined at each zoom level. All ROIs at a particular
zoom level have the same dimensions, i.e., the dimension of the
corresponding viewport at that zoom level.

A ROI is a good candidate if it encloses as many cluster points
as possible without leaving out cluster points. Hence we need a
measure to quantify the extent to which a viewport cuts a cluster
into two or more parts. We define a term called the cut of a view-
port. If a viewport does not cut a cluster, then its cut is very high.
The concept of using a cut has been proposed in earlier work [?,
?, ?], but we use the notion of cut in conjunction with clustering
to minimize cuts to the top portion of an object. Such an approach
is better suited to aesthetically present human-like objects without
cutting body parts. Figure ?? shows a case where the viewport cuts
the clusters into two parts. There is a cluster region enclosed within
the viewport, and the remaining cluster points fall outside the view-
port. The region within the viewport encloses the lower part of two
human subjects whose presence may be identified by the structure

(a) Bad Cut (b) Good Cut

Figure 4: Frames Showing a Bad Cut and a Good Cut

(a) Coordinates (b) Cut Weights

Figure 5: Viewport Coordinate System and Weight Assignment
for a Cut

of the clusters shown. Hence, this viewport should be penalized.
On the other hand figure ?? shows a viewport cutting a cluster such
that the upper portion of the human subjects is enclosed, and the
lower portions are cut out of the scene. This viewport should be
treated favourably in comparison to the previous case. Hence the
cut of a viewport should also account for how the cut is performed.

We now formally define how the cut is computed. For a frame
f , let C f represent all the cluster centroids in f . Let E(c), where
c ∈ C f , be the set of pixels clustered around centroid c. Then
CUT (V f , f ), the cut of viewport V f with top left coordinate (vx,vy)
and height h (See also Fig ??), is a measure for the extent to which
E(c) is fully contained within V f :

CUT (V f , f ) =
∑c∈C f ∑p∈E(c)W (p,V f )

∑c∈C f
|E(c)|

where W (p,V f ) with p at coordinate (x,y) is given by

W (p,V f ) =


1 ifp ∈V f

1− ε ify > vy +h
φ ify < vy
ρ otherwise

and 1 > 1− ε >> ρ > φ (See also Fig ??). CUT (V f , f ) reaches a
maximum value of one when V f contains all cluster points.

Our goal is to find the best viewports that maximize CUT (V f , f ).
This step is achieved by evaluating all candidate viewports and se-
lecting a few that have the highest value of cut.



4.3 Tubing: Finding Recommended View-
ports over Time

Viewports change in every frame. When users select a recom-
mended viewport in a frame, the same viewport may not be optimal
when recommended in the next frame. The system has to switch to
a nearest viewport, causing a virtual camera shake. To minimize
the irritation caused by frequent and abrupt change in viewport po-
sition, we compute an optimal strategy to switch viewports while
maintaining a smooth, linear transition of the viewport position.
Such a linear change manifests as a virtual camera pan.

To compute a virtual camera pan, we first designate some frames
in the video as key frames. All frames falling between two key
frames constitute a shot. The viewport is allowed to linearly change
position within the shot. We expect the viewport at the beginning
of a shot to smoothly change to a viewport at the end of the shot.

In our implementation, we use one key frame every 20 frames.
There is a trade off involved in the choice of inter key frame dis-
tance. More key frames would lead to less stable viewport (more
shaky) and fewer key frames would lead to less optimal recom-
mended viewports (the reason for which will become clear later).

There are multiple candidate viewports at different zoom levels
at the beginning and at the end of a shot. We can choose different
combination of the starting viewport and ending viewport. Each of
these combinations result in a spatial-temporal trajectory of view-
ports across the frames in between the two key frames. We refer
to this trajectory as a tube. Since we linearly interpolate the view-
ports in a tube, a viewport in an intermediate frame may not be the
optimal viewport for that frame (as determined by the cut).

Our goal is therefore to find a good tube that gives good overall
viewport quality across all frames in the tube. To this end, we de-
fine four metrics to evaluate the quality of the tube. Given a tube
T =<V f ,V f+1, . . .V f+N > we first consider the cut metric, which
is used to prevent violation of aesthetic rules, especially for human
body. We define the cut of a tube as the sum of all cuts of view-
ports in the tube. Second, we consider the importance of the tube,
and define the heat of a tube as the sum of all importance value in
every viewport Vi,i∈ f ... f+N in the tube, i.e., the pixel values in the
importance map of each frame that falls in the viewport. Third, we
consider the temporal coherence of a tube. We aim at preserving
the motion of foreground objects within a tube. We proceed as in
[?] and track our clusters over time by mode seeking. A given clus-
ter is tracked across l frames creating a temporal chain of cluster
centroids < c j,c j+1, . . .c j+l >id that starts at frame j. Each chain
is assigned an unique id, and every cluster whose centroid is part
of this chain is labelled with that same id. With this simple method
clusters might split or merge as we track, creating new chains. This
is not an issue as it is not required to precisely track and segment
objects to ensure temporal consistency [?]. The temporal coherence
of a tube can then be computed. For every pair of viewports V f ′ and
V f ′+i in the tube, a score proportional to i is added to the tube’s co-
herence value COH(T ) every time clusters with the same id can
be found in both V f ′ and V f ′+i

3 The coherence is then normalized
to range into [0,1]. Finally, we consider the spatial displacement of
the tube. We define the regularity of the tube as the measure for rate
of change of the viewport positions within the tube. We compute
regularity as

e−
‖v f −v f+N‖2

2
N2 ,

3COH(T ) ∝ ∑
f+N
i= f ∑c∈Vi∩Ci ∑

f+N
k=i+1 φ(c,k) where φ(c,k) = k− f if

the cluster centroid c has an id that can be found among the ids
present in Vk.

where v f and v f+N are the initial and final viewport positions re-
spectively, and N is the number of frames in the tube T . This met-
ric penalizes large displacement of viewports with an exponential
weighting function.

To find the set of good tubes between two key frames, all possible
tubes are computed and assigned a score by simply summing the
four metrics. The top k tubes with the highest scores are chosen
and form the recommended viewports between the two key frames
(we use k = 3 in our implementation). An example of the result of
creating tubes is shown as viewport sequences in figure ??.

5. COMBINING CONTENT-BASED ANAL-
YSIS AND CROWDSOURCING

Using the approach detailed in the previous section, we have
viewports to recommend to users (step 3 of Fig ??). We then start
collecting user interaction traces with our zoomable interface. The
goal is to find an approach to refine the content based viewport rec-
ommendation with the user selected viewports.

While zooming with the interface, each user selects a viewport
at a given frame f . This viewport V f is a rectangle whose top left
corner is positioned at (vx,xy) and is of size (w,h). The view-
port crops the important region the user is interested in. Since
the level of interest of each cropped pixel differs with respect to
its position within the viewport, as in [?] we assume that users
naturally center the viewport on the most interesting area. We
then model the interest within a viewport as a gaussian pdf be-
ing centered at µ = (vx +w/2,vy + h/2) with a covariance Σ con-

strained to the dimensions of the viewport: Σ ∝

(
w2/4 0

0 h2/4

)
and∫

Vf
N (µ,Σ) = 0.99.

A user interest map UIM f associated with frame f is then crowd-
sourced by accumulating the interest levels from multiple users. If
we collect K viewport traces from K users who have zoomed on
f , a gaussian mixture model can be computed such that UIMK

f =

1/K ∑
K
k=1 N (µk,Σk).

The first image in Figure ?? shows K = 16 viewports selected
by users while watching a long jump video with our interface. The
second image shows the associated user interest map generated us-
ing the gaussian mixture model described earlier. In this example,
users focus on the sand pit because they were asked to estimate the
length of the jump. Traces collection is explained in Section ??.

With this simple formulation, the user interest map computation
stabilizes after only 10 or 15 users. We observed that the KL-
divergence KL(UIMK+1

f ||UIMK
f ) is negligible for K ≥ 15. Note

that in this paper we do not consider any sequential estimation of
the user interest map where a weight could be used to de-emphasize
old traces in a time-varying context.

Figure 7: Creating user interest maps

As shown on step 5 of Fig ??, we then use the implicit feedback
from users as another modality in the computation of importance
map. We merge user interest maps with content-based importance
maps by assigning them an equal weight. How to properly weight



Figure 6: Viewport sequences showing Tubes. Tube-A is a long tube showing a scene where a person in motion is followed. Tube-B
and Tube-C are other candidate Tubes rejected by the Tubing algorithm. Tube-B is short and has a low Regularity measure, while
Tube-C is not only short but also has a lower cut value that manifests as a not so aesthetic framing

remains an open question: we plan to study the performances of
different (either static or dynamic) weighting strategies in our fu-
ture work. Yet experiments presented in the next section show that
this simple strategy already demonstrates significant success. In-
deed by applying the algorithms presented in section ?? to this new
importance map, we obtain updated recommended viewports that
match intention of the users better.

6. RESULTS

6.1 Experimental Setup
Video Sequences. We use four videos to assess our work. Three

of these videos show a long jump, where we can see the end of the
runway and the sand pit. The action consists of an athlete running,
jumping, and then going back to his coach while the sand is being
swept (see Fig ??). We refer to these video clips as longjump0,
longjump1 and longjump2, and each last around 30 s.

The fourth video is longer and semantically more complex.
Fig ?? summarizes the action taking place in a coffee lounge. At the
beginning of the video, two people are sitting in the foreground on
blue sofas (times 0:01 and 0:03). A new person in orange sweater is
then entering the scene, and loses his keys while removing his wal-
let from his pocket (time 0:10), before reaching the coffee machine
and staying there (time 0:12). At the same time, one of the two
seated people picks up the keys (time 0:16) and hands it over to his
friend who leaves the scene. After this theft, a fourth person arrives
and goes to the coffee machine (time 0:38), after leaving his wallet
on the same table as the person in orange (see also Fig ??). At the
end of the video, the two people from time 1:00 (Fig ??) take their
wallets and leave the scene, leaving the thief alone in the room. We
call this 1 minute and 22 seconds video clip coffeelounge.

Figure 8: longjump2 video

Interaction Techniques. We built four variants of user inter-
faces for zoomable video. The version we proposed in this paper
is denoted as RC+U, which stands for Recommendation based on
Content and Usage.

To study the effect of combining usage analysis with content
analysis, we setup a version of the user interface that uses only
recommended viewport computed using content analysis, without
considering user access pattern. We call this version RC (Recom-
mendation based on Content). This version is equivalent to the
output of Step 3, after the process described in Section ??.

The third variant of the user interface we setup is called NR,
which stands for No Recommendation. The purpose is to study
the effects of presenting recommended viewport to the users. All
interaction elements in this user interface remains the same, except
that the recommended viewports are removed.

Finally, we setup a variant of the interface which we refer to
as NZ, standing for No Zoom. We use NZ in one of our control
experiments. NZ does not allow any zooming or panning.

Methodology. We evaluate the three successive versions (NR,
RC and RC+U) of our interface by conducting the following user
study. In our experiments, the user traces from RC are used to
compute the recommended viewports of RC+U.

We assign tasks to users where zooming may be useful. We
ask them to estimate the jump length in longjump0, longjump1 and
longjump2 and we ask them if there are key thefts and/or wallets
thefts in coffeelounge.

First we provide a first group of users with NZ, which plays only
the low resolution (320× 180 px) version of the video sequences
without any interaction. We want to evaluate how well users answer
the questions without zooming.

The core of the user study involves comparing the three versions
of our interface: NR, RC and RC+U using three independent set of
20 users Users0, Users1 and Users2.

Except for NZ where no interaction is available, we always start
our user studies with a learning phase. We first demonstrate the fea-
tures of the interface, and then observe how users interact with our
training video (longjump0). We never continue the study without
explicitly reminding the user of interactions he/she did not try.

Then we explain to users what task they have to complete while
viewing the next video clips. We always present the clips in the
same order: longjump0, longjump1, longjump2 and coffeelounge.
We collect a user’s answers at the end of each clip. We let users
watch the video as many times as they want and we record every
interaction into a database. In average the test lasted between 8 and
10 minutes for each participant.

Participants. We collected traces from 16 females and 54 males
(total 70 participants), with an age ranging between 19 and 55 years
old. Among these users, 10 were presented NZ and 20 each were
presented other interfaces.



General Statistics. We collected a total amount of 102,470
events in our database, 34,623 being produced during the train-
ing phase on longjump0. All those events are needed to compute
user interest maps (see Section ??). However in the following dis-
cussion, we only consider a subset of those events that allow us to
compute the number of zoom in, zoom out and panning. We got
6,694 of such events from a total number of 434 viewings of our 4
videos (6 viewings per person on an average).

We now present the results of our user studies. We discuss only
our data on longjump2 and coffeelounge because of the following
reasons. First we used longjump0 to train users. Second longjump1
has been used as a control experiment to check that our results are
independant from the set of users. Indeed, we observe that Users2
behave the same as Users1 when viewing longjump1 when they
were provided with the same set of recommended viewports using
the interface RC (see Table ??). We omit the detailed result of this
control experiment here due to space constraint.

Video Users0 Users1 Users2
longjump1 NR RC RC

longjump2 and coffeelounge NR RC RC+U

Table 1: Protocol of the Experiment

6.2 Number of Interactions
We analyze the traces to count the number of user interactions

in each of NR, RC, and RC+U. Figure ?? shows the results. We
first observed that there is no significant difference in the number of
zooms, but the number of pans when using NR is on average almost
twice as much as RC+U. Since pans are used mostly to position the
viewport correctly, this results show that the recommended view-
port is useful in reducing the number of interactions. The number
of pans for RC+U is also less than RC, indicating that the quality of
recommended viewports for RC+U is better, as users pan less using
RC+U. This point will be further elaborated in the next result.

Note that coffeelounge lasts 1 minute 22 seconds while
longjump2 is only 35 seconds long, an this explains the difference
in the number of panning for each video.
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Figure 9: Number of panning events per view session

Number of Recommended Viewport Selected To further com-
pare the recommended viewports between RC and RC+U, we ana-
lyze the trace at one particular event in the coffeelounge video, to
further understand how the recommended viewport are clicked.

When Users1 zoom on the coffeelounge video (with RC), the
recommended viewports are clicked 45% of the time. The remain-
ing 55% clicks are outside the recommended viewports (Table ??).
The first row of Table ?? gives insights into the distribution of
zoom levels of those 45% clicks. It shows that users rarely zoom
to the maximum level (i.e. close-ups). This result highlights the

importance of the relationship between content semantic and par-
ticipants’ tasks. In this task, automatically detected close-ups are
not useful enough to successfully complete the task.

However, RC+U exhibits better performance regarding the num-
ber of recommended viewports clicked like we see on the second
row of Table ??. The ratio of clicks on recommended viewports and
outside shows that recommended viewports are more relevant. This
underlines the interest of combining content analysis with crowd-
sourcing to learn better ROIs. Moreover, learning better ROIs
affects the distribution of zoom levels, summarized by Table ??.
As shown below, emergence of task-relevant close-ups encourages
users to zoom more when needed.

We observe the same phenomenon on longjump2. Recom-
mended viewports in RC are not really selected by users (only 18%,
see first row of Table ??). But once combined with user maps, new
recommended viewports are twice as much clicked by users (40%).

Video longjump2 coffeelounge
RC 18% 45%

RC+U 40% 55%

Table 2: Percentage of clicks in recommended viewports for RC
and RC+U

Interface 960×540 px 640×360 px 320×180 px
RC 73.2% 25.6% 1.2%

RC+U 24.6% 42.5% 32.9%

Table 3: Size of the recommended viewports clicked by users
on coffeelounge

In summary, we found that integrating user interest maps to im-
prove the relevance of recommended viewports yields a better rec-
ommendation. Users more often used the recommended viewports
resulting in lower number of panning events.

6.3 Tracking of Moving Objects
We now demonstrate the importance of using content analysis to

recommend the initial set of recommended viewports.
Because content analysis includes motion detection and tubing

ensures temporal consistency, some recommended viewports track
moving objects on the scene. Fig ?? shows one such example, fol-
lowing a character entering the scene and putting his wallet down
a table. This recommendation actually helps answering one of the
task questions because it makes users identify which wallet belongs
to who. This particular region has been selected by 7 users out of
20 using RC.

Fig ?? emphasizes the importance of content analysis. The first
and second rows show user maps from RC and NR respectively,
during the time interval as in Fig ??. We see that the movement of
the character clearly emerges as a focused hotspot (materialized by
moving red dots) in RC. This hotspot is a result from the previously
mentioned 7 viewers who used RC to click on the recommended
viewports. With the NR interface, users can not easily follow the
moving character even with repeated panning. The user maps from
NR (second row of Fig ??) illustrate the absence of a hotspot fol-
lowing the moving person. Therefore, introducing content analysis
before explicitly learning from users, reveals more about content
semantic than relying only on crowdsourcing.

6.4 Better Framing



Figure 11: Two sets of user maps during the same time interval: first row comes from use of RC and second row from use of NR

Figure 10: Example of an object producing a moving recom-
mended viewport.

The other strength of our approach is that, by integrating con-
tent analysis into recommendation of viewport, we can eliminate
recommended viewports that violate basic aesthetic rules.

Figure ?? presents the output of our framing optimization on the
same frame but with different input. In the left part of the figure, we
use user interest maps from NR, resulting in an unsatisfied framing.
Users of NR have been watching this region at a higher zoom level
centered between the two human subjects in the scene. Hence the
user interest maps were produced with a blob at this exact place.
The framing optimization placed the recommended viewport in the
region maximizing the heat (as per algorithms detailed in the pre-
vious section) resulting in a case of bad framing.

The right part of the figure shows the same result but with user
interest maps from Users1 as an input. In this case, users were bi-
ased with the recommended viewports generated, thanks to content
analysis. The corresponding user interest map presents a hotspot
slightly shifted to the right compared to the one generated from
Users0. As a result, the framing optimization produces a recom-
mended viewport that is aesthetically better as it does not cut body
parts of the subjects in the scene.

Figure 12: Framing with traces from use of NR (left) and use of
RC (right)

6.5 Understanding Video Content
Previous results show that recommended viewports from RC+U

are selected more often than the ones from RC, but does it mean
that it helps them understand the content better? The answer, as
shown in this section, is yes.

Table ?? presents users’ answers to the questions based on the
task specific to coffeelounge. As a reminder, we asked users
whether or not a key was stolen (the correct answer is yes), and
whether or not a wallet was stolen (the correct answer is no).
Whereas it is quite easy to spot the theft of the key even without
zooming, there is an ambiguity with regard to the wallets (it may
appear as if they were exchanged). Zooming in to the region of the
wallets can resolve this ambiguity.

We noticed that 70% users who see the video at a low resolution
(NZ) spot the key theft, whereas only 50% identify that no wallets
have been stolen. We actually observed during the study that users
tried to guess the answer because they could not see accurately, and
indeed the answers were equally distributed as yes and no. This
result provides us with a lower bound to compare interfaces NR,
RC and RC+U.

The percentage of good answers is higher with NR thanks to the
zooming functionality, especially for the wallets question (70% of
good answers). However results are disappointing for RC. Guid-
ing users with recommendations is potentially double-edged: since
they follow the recommendations (Table ??), the quality of their
answers is correlated to the relevance of the recommended view-
ports with respect to the task. About the specific wallets task, it is
understandable that content analysis alone fails to detect the region
around the wallets as one of the prominent ROIs.

We get the best answers with RC+U, which combines content
analysis and crowdsourcing. Indeed we observe in Fig ?? that
crowdsourcing complements content analysis to create a new rec-
ommended viewport located on the wallets.

Interface NZ NR RC RC+U
Is there a key stolen ? 70% 75% 70% 85%

Is there a wallet stolen ? 50% 70% 50% 75%

Table 4: Percentage of right answers to the questions

Figure 13: Example of ROIs emerging in RC+U: close-up on the
wallets in coffeelounge and sand pit in longjump2.

We do not discuss the answers to the task for longjump2 be-
cause the task is not discriminant enough to create differences in



the quality of answers when different interfaces are used. However
consistent with coffeelounge task, we observed the emergence of a
recommended viewport particularly suited to the task (see Fig ??).
Conversely some recommended viewports have a low interest with
respect to the assigned task and have not be selected by Users1. As
a consequence, they disappeared in RC+U making our video inter-
face adaptive and user-centric.

7. CONCLUSION
The main contributions of the paper are as follows. First, we

have proposed the use of recommended viewports as a new way for
users to interact with a zoomable video. A recommended viewport
highlights interesting and relevant regions in the video and auto-
matically tracks moving objects of interest, making it simple for
users to click and zoom on interesting regions. Second, we pro-
posed a hybrid approach to identify suitable recommended view-
ports automatically, by analyzing the content of the video and the
user viewing pattern when watching the video. Our approach plays
on the strength of both techniques, using usage analysis to crowd-
source user’s intention when viewing the video, and using content
analysis to help with proper framing of the viewport around objects
and with tracking of moving objects. Our approach can be viewed
as one that uses implicit feedback from users as another modality
to understand the content of the video.

Our work can be extended in many ways. Firstly, more sophis-
ticated content analysis algorithms can be used to identify salient
regions, track objects, and frame the viewport aesthetically. Sec-
ondly, our current research stops at learning from a set of 20 users.
An open question is how to continuously crowdsource from users
and adapt the importance map, and thus the recommended view-
port. Thirdly, if we have multiple videos of similar types (e.g.,
multiple lecture videos from the same lecturer), then we can use the
user interest map collected on one video to compute proper weights
for linear combination of the different saliency features when an-
alyzing the content of other videos. That is, we might be able to
perform semi-supervised learning for computer vision algorithms
using implicit feedback from users.

Identifying the important and relevance regions in a video has
many other applications, beyond improving user interaction with
zoomable video. The recommended viewports can be used to pro-
duce a retargeted video that automatically zooms and pans, essen-
tially summarizing the content of the video to the users without
interaction. Furthermore, we believe that the recommended view-
ports allows us to better predict what a user would like to watch
during a given time in the video. Making such accurate predictions
is crucial for prefetching of zoomable video during streaming, and
to reduce the response time when users zoom and pan.
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