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ABSTRACT
Screen size and display resolution have limited the viewing experi-
ence of videos on mobile devices. The viewing experience can be
improved by determining important or interesting regions within
the video (called regions of interest, or ROIs) and displaying only
the ROIs to the viewer. Previous work focuses on analyzing the
video content using visual attention model to infer the ROIs. Such
content-based technique, however, has limitations. In this paper,
we proposed an alternative paradigm to infer ROIs from a video.
The idea is to crowd-source from a large number of users through
their viewing behavior and infer the ROIs from their collective wis-
dom. We let users interact with the video through a zoom and pan
interface. What these users choose to view can be used to deter-
mine the best ROIs. We thus generate a retargeted version of the
video consisting in relevant shots determined from historical users
behavior. Such automatically retargeted video can be replayed to
subsequent users who would prefer a less interactive viewing expe-
rience. This paper presents how we collect the user traces, infer the
ROIs and their dynamics, group the ROIs into shots, and automat-
ically reframe those shots to improve the aesthetics of the video.
A user study with 48 participants shows that our automatically re-
targeted video is of comparable quality to one handcrafted by an
expert user.

1. INTRODUCTION
In recent years, we have seen a proliferation of consumer video

cameras that are capable of recording high-definition video (1920×
1080 pixels or more), capturing fine details in their shots. Con-
sumers, however, are increasingly viewing videos on mobile de-
vices, that are constrained in their screen size and display resolu-
tions due to their form factors. Many of the captured details are lost
due to the impedance mismatch between the two resolutions.

Past research have shown that users tend to zoom in and pan on
images [18] and videos [1] to view the details on a small screen.
Through a user interface, users can select the region in the image
or the video that are of interest (called region of interest, or ROI for
short) to display in finer details.

While letting users specify the zoom and pan actions explicitly
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put users in control of what they want to see, it requires the users
hand for interaction. In certain scenarios, however, minimal user
interaction is preferred, for example, watching video during work-
out in gym and taking notes while watching the video. Automati-
cally identifying and displaying the ROIs to users is useful for such
scenarios.

Figure 1: User interface of the zoomable video player

Existing research have investigated various methods to retarget
an image or a video for display on small screens. The proposed
methods generally aims to (i) identify the most informative regions
in an image or a video, and (ii) display them to the users in a visu-
ally pleasing way. The methods fall into two categories: content-
based methods identify the ROI based on low-level features (e.g.,
color, motion) or semantic (e.g., face, text) of the content; while
usage-based methods identify the ROI based on user feedback (e.g.,
explicit zoom and pan commands).

We found that content-based methods for identifying ROIs do
not work well in all cases, especially in a video with complex
scenes. Consider the example of the video of a street performer.
There could be multiple pedestrians walking around, or audience
crowding around the performer, potentially wearing clothes in attention-
catching colors. The ROI, however, should remain on the street
performer. Content-based methods, which are based on salient fea-
tures of the video, could easily get confused and extracted pedes-
trians or audiences as the ROI in addition to the performer.

Despite the tremendous innovation and achievement of the re-



Figure 2: Approach overview: four frames and a few viewports (first row), heatmaps and detected ROIs (second row), retargeted
frames including reframing techniques (last row). (Note that the lecturer’s eye are redacted for anonymous review).

search community in automatic ROI extraction, we believe that, in
complex scenes, extracting the correct ROI becomes difficult. As
such, we have turned to an alternative paradigm in this paper.

The main idea behind our method is to identify the ROI through
the wisdom of the crowds. Since users are the final consumers of
the content, they are naturally the best possible “ROI detectors”. To
understand our technique, however, we need to first explain how we
crowd-source the ROI selections from the users.

We have previously developed a web-based video player that al-
lows users to zoom in and pan on a high definition video sequence
captured with a static camera and viewed in a small view window
[1]. We call our player a zoomable video player. Figure 1 shows the
screenshot of the interface to the player, which consists of a video
display of size 320×180 (top), a thumbnail display of size 160×90
(lower left corner), and control buttons (lower right corner). Users
can zoom in and out of any region within the video to view the cho-
sen region at higher resolution. Zooming is equivalent to viewing
a sub-region of the video through a viewport. Pixels from the high
definition video that fall within the viewport are scaled and shown
in the video display. A viewport example is illustrated as the high-
lighted rectangle in the thumbnail display of Figure 1. Users can
pan within the video at the same zoom level to move the viewport
to a different region.

The player logs the viewport, i.e., what the user chooses to watch,
on every frame. We assume that most users watch the most interest-
ing and relevant regions within each frame. Thus, these historical
viewport traces become good predictors of the most interesting re-
gions in every frame.

This paper presents how crowd-sourcing of users’ interaction
with a zoomable video can be used to automatically produce a re-
targeted video on small devices. The overview of our approach is
presented in Section 2. We then take the readers through the pro-
cess in steps. We describe the methodology used to log zoom/pan
interactions through our web-based player in Section 3. Section 4
explains how we identify ROIs from the log data in each frame.
Section 5 presents how ROIs of consecutive frames are grouped
together into shots (a shot is a sequence of frames without cuts).
Concatenating the shots together, however, may not lead to a visu-

ally pleasing video. We thus apply reframing techniques to improve
the visual aesthetic of the video through automated editing. The au-
tomated editing is described in Section 6. We evaluate the resulting
video through a user study (Section 7) and discuss the related work
in Section 8. Finally, we conclude the paper in Section 9.

2. APPROACH OVERVIEW
Figure 2 illustrates our approach to retarget a video using a short

lecture video sequence, which contains three subsequences: the
speaker talks while written text is visible on the left whiteboard;
the speaker walks to the left; the speaker writes more on the board.
The top row of Figure 2 shows the source video, which is a high
definition video shot with a fixed camera located at the back of the
classroom. The video sequence was presented to users through our
zoomable video player introduced in Section 1.

We use red rectangles to denote viewports selected by users. We
overlay the viewports on top of the source video (first row of Figure
2) to illustrate what the users choose to zoom into when watching
this video sequence. One can notice that some users stay focused
on the whiteboard, while others follow the speaker’s motion. Two
users can be clearly distinguished in the beginning of the video
sequence (first column). By the end of the sequence, all users con-
centrate on the board (last column).

Viewports selected by users in each viewing session are stored
in a database; viewports selected by many users naturally cluster
around ROI within the video. Based on the viewport traces col-
lected, we construct heat maps that express the cumulated user in-
terest for each frame (Section 4.1). On a heat map, interests are
represented with brightness of the pixels – the brighter the color is,
the more user interest there is. We call these patches of bright spots
the hotspots. Second row of Figure 2 shows the corresponding heat
maps of the lecture video sequence. In this example, some hotspots
move along with the speaker, while others do not.

To retarget a video, we need to determine the best region of in-
terest from multiple hotspots that exist in each frame. Note that this
cannot be done simply by selecting the hotspots with the most user
interest. Multiple hotspots of similar interest level might be located



close by, in which case perhaps the ROI should include all these
hotspots. To determine the ROI, we model the hotspots on a frame-
by-frame basis using Gaussian Mixture Models and use Minimum
Covariance Determinant to find a region with maximum amount of
interest with smallest area (Section 4.2). In this paper, we use blue
rectangles to denote ROIs. In the second row of Figure 2, we show
the ROIs of each frame. Note that a ROI contains multiple hotspots
in the first three shots of the figure.

After identifying the ROI of each frame, we model the dynam-
ics of the ROI across time using a graph that links ROIs between
consecutive frames (Section 5.1). We segment the graph (section
5.2) to group the ROIs into shots based on the distance between the
ROIs. At this point, a ROI may belong to multiple shots. How-
ever, the next step decides which shot a ROI belongs to in the final
retargeted video. Reframing rules are used to improve the visual
aesthetics of the video. ROI movements across frames are damp-
ened to smooth out movements, and reestablishing shots are added
to help the viewer in understanding the context of the shots (Sec-
tion 6). The third row of Figure 2 shows an example of the resulting
retargeted video produced automatically using our steps above.

3. CROWD-SOURCING VIA ZOOMABLE
VIDEO PLAYER

We now describe in more details how we collected traces of
viewports selected by users via our zoomable video player.

Figure 1 shows the screenshot of the player. A video display
of size 320 × 180 can be found on top. The small view display
simulates the scenario where a video is watched under resource
constraints (low bandwidth, or small screen size, or low decoding
capability). The lower left corner of the interface contains a thumb-
nail window of size 160×90. The thumbnail always display a scale
down version of the source video. The viewport is shown in white
whenever users zoom in, to provide the users with the context. The
lower right corner shows some control buttons where the users can
click to zoom and pan, as an alternative to using the mouse.

Video sequences in our system are of a HD resolution (1920 ×
1080). By default (zoom level 0), the video is scaled down for
playback in the video display. At this zoom level, the user can view
the whole video, although with a lower level of detail. Five levels
of zoom are supported (levels 1 to 5). Viewing a region at a higher
zoom level is equivalent to viewing a cropped region of size 320
× 180 from a higher resolution version of the video. For instance,
at zoom level 5, users see a 320 × 180 region from the original
source video. At zoom level 4, users see a 640 × 360 region from
the original HD video scaled down to fit the 320 × 180 window.
Users can use either the + or − buttons or the scroll wheel on the
mouse to zoom in and out.

Users, after zooming in, can drag the mouse on the video display
to pan. They may also use the arrow buttons for finer grain control
of the panning. Users can pan anywhere within the content of the
original HD video.

Despite using user interfaces that are similar to those used by
other zooming interfaces (e.g., Google Earth), we found in our pre-
vious deployment that many users tend to play around with the dif-
ferent possibilities of the user interface. To prevent this, we have
asked the users that use our system to watch an instructional video,
showing them on how to use the interface. After watching the
video, we force our users to go through a small practice session,
in which they are asked to complete a step-by-step tutorial on how
to use the user interface. The practice session must be completed
before users can start watching any zoomable video.

The system logs all mouse and keyboard operations performed

by the users, along with their timestamp, when they watch the
zoomable video (the interactions from practice sessions are not
logged). From these logs, one can replay the users’ zoom and
pan action, as well as determine the viewport of each user on each
frame.

4. REGION OF INTEREST MODELING
We now describe how we extract ROIs from the logs of users’

interactions with a video. We construct a heat map (or user interest
map) by aggregating the selected viewing regions from multiple
viewers. The heat map might yield multiple hotspots – regions
that are popularly viewed by the users. The challenge now is to
extract an ROI based on these hotspots. Note that simply taking
an ROI that covers all hotspots might not give the best solution,
since it might cause the retargeted video to zoom out, while the
interesting regions are in the details. Taking an ROI that covers
only the most popular hotspots does not work either. There could be
other almost equally popular hotspots nearby that could have been
included in the ROI. To produce a good ROI, we thus need to take
both the popularity and size of the ROI into consideration, ideally
producing a smallest ROI with highest popularity. We elaborate on
our approach in the rest of this section.

4.1 Heat map construction
During playback, for any frame, each user chooses a rectangular

viewing window (i.e., viewport) via zoom and pan. We observed
that users naturally center the window (e.g. the focus) on their pre-
ferred regions. Each pixel from a viewing window does not have
the same interest level. The closer a pixel is to the window’s center,
the higher should its contribution to the user interest map be. In line
with previous work [8], we model the pixel-wise interest levels us-
ing gaussian probability density functions (pdf). Figure 3 illustrates
our method. A viewing window centered on µ = (u, v)T is shown
superposed on a frame. We also plot the gaussian pdf with the same
center and a covariance matrix Σ that fits well with the viewing
window. Theoretically the matrix Σ is chosen such that the ellipse
whose equation is dM (x, µ)2 = (x − µ)T Σ−1(x − µ) = 13.8 is
tangent to the viewing window VW1. As a consequence, we have
a gaussian weight at each pixel and a gaussian elliptical footprint
for the associated viewing window (Figure 3). Now we have to
aggregate the data from multiple viewers to produce our user inter-
est map. We simply blend the footprints by accumulating gaussian
weights and normalize the result by dividing it by the number of
windows involved for each pixel.

Middle row of Figure 2 shows typical heat maps: the dark areas
represent less popular regions in the video frame, whereas brighter
areas have cumulated many votes and highlight preferred regions
of interest. The clustering of hotspots indicates that users tend to
agree on the most interesting regions, with only a slight variations
on zoom factor and focus. Less important ROIs may differ from
viewer to viewer. Another heat map example is given by Figure
4, extracted from another test video (dice tricks). At this stage the
reader should ignore the green annotations, to be explained later.

4.2 Modeling ROIs as a GMM
The next step is to extract ROIs. There are many possible tech-

niques to detect and model ROIs of a heat map. Huang et al. [10]
cite three main approaches: a simple binary mask, a set of focus
points (FOA - focus of attention), an importance map viewed as a
probability density function using a mixture distribution. We favor

1The threshold comes from the Mahalanobis distance d2M ∼ χ2
2

such that ∀x ∈ VW P{dM (x, µ)2) ≤ 13.8} ≥ 0.999



Figure 3: Gaussian weights within a viewing window

Figure 4: Hotspots for the magic tricks video (top) and multiple
starts of Mean Shift, converging to two modes (bottom)

the latter in our video retargeting application: in section 5.1 we will
see that modeling the ROI dynamics using a mixture model proves
to be rather simple. We basically aim at modeling the heat map at
frame t as a Gaussian Mixture Model (GMM) involving K ROIs.
We assume that the interest location variable x ∈ R2 leading to a
heat map follows a GMM pdf:

p(x|θt) =

K∑
j=1

ωt,j p(x|µt,j ,Σt,j) (1)

where ωt,j are the relative importance weights of the K ROIs
considered at frame t and subject to ωt,j > 0 and

∑K
j=1 ωt,j = 1.

Each ROI’s density is a normal probability distribution :

p(x|µt,j ,Σt,j) =

exp

[
−

1

2
(x− µt,j)

T Σt,j
−1(x− µt,j)

]
(2π) |Σt,j |1/2

(2)

where µt,j and Σt,j are the moments of the jth gaussian ROI at
frame t. The global set of parameters for frame t is θt = {ωt,1

. . . ωt,K , µt,1 . . . µt,K ,Σt,1 . . .Σt,K}. One may think that it is
straightforward to estimate θt byEM (Expectation Maximization)
but a major question that remains is the correct value for K (the
number of ROIs). This can be formally expressed as a model se-
lection problem [10] but we actually show that a non parametric
clustering technique and a smart method for the covariance matrix
estimation fits better our need.

4.3 Parameters estimation and ROI detection
We use the Mean Shift Clustering technique [3] to automatically

find the K modes (peaks of the heat map) and to subsequently as-
sign pixel locations to the associated K clusters. The basic Mean
Shift procedure starts from a pixel point and converges towards a
stationary point of the density function (see the green traces corre-
sponding to multiple starts on the figure 4 (bottom)). The set of all
pixels that converge to the same mode defines a cluster. The method
does not require prior knowledge except one parameter: the kernel
bandwidth. A value of ξd = 90 pixels was selected since it is the
right distance to separate significantly different viewing windows
in full HD images.

Once we have the modes µt,j , we also need good covariance ma-
trices that produce ROIs well centered around the modes and small
enough (in order to get a good attention window). We estimate
each Σt,j with the Minimum Covariance Determinant (MCD) esti-
mator. This estimator is basically a robust estimator that allows to
cope with outlying or spread data. Its principle consists in finding
a covariance matrix able to capture a maximum amount of interest
while having the smallest area. As previously mentioned, the area
is proportional to the covariance determinant that is minimized by
our MCD estimation for Σt,j . Moreover, the weigths ωt,j are taken
proportional to the clusters’ sizes. The GMM parameters set θt is
now fully defined. Figure 4 (top) shows two gaussians centered on
the two modes (red points). Each gaussian is represented by a set of
iso-values, the biggest one being tangent to the detected rectangular
ROI.

5. GENERATING SHOTS
Thanks to our GMM-based models, ROI can be detected for each

frame. The next question is how to deal with the temporal dimen-
sion. In this section, we first model the ROI dynamics. Then we
produce shots highlighting the most preferred areas. Finally, these
shots will be enhanced (section 6) using reframing techniques in
the last stage of our approach.

5.1 Graph-based dynamics
Regions of interest are different from frame to frame. The view-

ers usually follow moving attentional objects or focus on particular
areas due to their semantic content. Let us consider the magic trick
video (figure 4): at a given moment the viewer is orally encour-
aged to pay attention to a dice or to a card in order to understand
the trick. We observed that most of the viewers actually follow
such instructions and zoom into the expected visual area. Such a
scenario naturally leads to time-varying ROIs both in position and
shape. Additionally, split, merge and delete occur within our set
of gaussian components as a natural consequence of ROI splitting,
merging and disappearing.

In order to model all these variations, we use a graph-based ap-
proach. Figure 5 (top row) shows the beginning of a video sequence
where the jth detected ROI at frame t is a graph node denoted
〈t, j〉. Only five frames are shown and there are only two ROIs
by frame except for the 4th and a 5th where a third one appears.



1 2 3 4

1.1

1.2

2.1

2.2

3.1

3.2

4.1

4.2

4.3

5.1

5.2

5.3

0

frame number

1 2 3 4

1.1

1.2

2.1

2.2

3.1

3.2

4.1

4.2

4.3

5.1

5.2

5.3

0

frame number

1 2 3 4

1.1

1.2

2.1

2.2

3.1

3.2

4.1

4.2

4.3

5.1

5.2

5.3

frame number

Figure 5: ROI dynamics graphs: full graph (top), MST graph
(middle) and MST after cuts (bottom)

Since we will later need a tree structure for the graph, we introduce
a virtual frame 0. More precisely, our set of ROIs is represented
as a weighted directed graph where an edge is formed between
every pair of ROI in subsequent frames (eg. [〈t, j〉, 〈t + 1, i〉]).
The edge set is noted E. The weight wd of an edge between two
ROIs is initially set as the euclidean distance between their modes:
wd(〈t, j〉, 〈t+1, i〉) is the distance between the ROI 〈t, j〉 (located
on mode µt,j) and the ROI 〈t+ 1, i〉 (located on µt+1,i):

wd(〈t, j〉, 〈t+ 1, i〉) = ||µt,j − µt+1,i||. (3)

Moreover, we add a few more attributes to label the ROI nodes
and to assess the ROI variations. Each ROI node 〈t, j〉 can be la-
beled with the associated weight ωt,j . The weight variation be-
tween two subsequent ROIs can also be measured by :

wω(〈t, j〉, 〈t+ 1, i〉) = |ωt,j − ωt+1,i|. (4)

Similarly, each node 〈t, j〉 can be associated with the area asso-
ciated with the covariance matrix π

√
det(Σt,j). The area variation

between two subsequent ROIs can be evaluated by :

wa(〈t, j〉, 〈t+ 1, i〉) = π.|
√

det(Σt,j)−
√

det(Σt+1,i)|. (5)

5.2 Shot segmentation
In order to group related and subsequent ROIs into shots2, we

seek a partition of the set of nodes where some consistency measure
in a subset is high. Our approach consists in two steps :

• compute a Minimum Spanning Tree according towd weights,

• cut some edges to produce consistent candidate shots.

A Minimum Spanning Tree (MST) is an acyclic subset T of
edges selected from the edge setE of the initial graph. For now, let
us consider that our graph is undirected. The MST edges T connect
all the ROI nodes such that their total weight is minimum :

wd(T ) =
∑

[〈t,j〉,〈t+1,i〉]∈T

wd(〈t, j〉, 〈t+ 1, i〉). (6)

2A shot is a single stream of images, uninterrupted by editing.

Figure 6: Minimum Spanning Tree (MST)

The second row of figure 5 presents an MST of the full graph.
Removed edges are those with the highest weight values. To get it,
we apply a simplified version of Prim’s algorithm that takes the par-
ticular structure of our graph into account (no edge between ROIs
at the same frame). Figure 6 also presents an MST on our lecture
video. The figure suggests the motion of the speaker walking left-
wards in the scene by using ghost effects. All the nodes of the graph
of ROIs are plotted in cyan. The MST edges are displayed in black
(same color coding as the one used in figure 5). Long edges can
be observed on figure 6 when the speaker moves quickly leftwards.
Long edges are characterized by an important wd weight.

The middle graph of figure 5 (MST) can be interpreted as fol-
lows. One moving attentional object is present in the frames 1-5.
Our ROIs (MST nodes) are able to track it along the tree. For ex-
ample, the object is tracked by ROIs 〈1.2〉, 〈2.1〉, 〈3.1〉, 〈4.3〉 and
〈5.2〉 from which we deduce a single stream of cropped images
(focused on the object): a tracking shot. In order to produce it au-
tomatically, the system has to decide to cut the edge between node
〈3.1〉 → 〈4.1〉. In other words, producing shots can be viewed as
splitting the MST tree.

A tree can be cut into two disjoint set by simply removing an
edge. The third row of figure 5 shows a MST after the cuts. Once
again, removed edges are those with the highest weight. Then
we form three shots (in red, blue and green). Similarily, figure 7
presents the MST of figure 6 after the cuts. In our application we
cut the edges with large wd weights. The threshold we use is also
the bandwidth parameter of Mean-Shift clustering technique that
aims at distinguishing separate ROIs:

Cut[〈t, j〉, 〈t+ 1, i〉] if wd(〈t, j〉, 〈t+ 1, i〉) > ξd (7)

Figure 7 presents the 5 shots we obtained from our lecture video.
Shot 1, 3 and 4 present the teacher speaking in the middle of the
classroom in the first part of the sequence. Shot 2 is focused on the
whiteboard. Shot 5 tracks the speaker motion. Figure 8 shows the
shots on the timeline.

As a refinement, for each shot, we also identify a few candidate
positions for possible new cuts to be used in the next step. For
instance, shot 1 can be further refined at frame 37 and 51. These
possible new cuts are identified by high values of wa(〈t, j〉, 〈t +
1, i〉) or wω(〈t, j〉, 〈t+ 1, i〉).

5.3 Compositing Shots
The final result we obtain from the graph is a sequence of shots

to be edited. For each temporal interval between two possible cuts
and among possible shots, we select the best one given a selection
criterion. In figure 8, the considered intervals are [1, 6], [6, 37] etc.



Figure 7: Shots after the MST cuts

1 6 37 40 51 77 89 112 129

shot 1 [1,89] 

shot 2 [1,129] 

shot 3 [6,37] shot 4 [40,51] shot 5 [77,112] 

Figure 8: Timeline [1,129] and possible shots

Each interval may be covered by several shots. The simplest se-
lection criterion may be the average weight of the shot divided by
its duration. In other words, this strategy selects the most popu-
lar shots. Other more complex strategies may be imagined. For
example, the selection may favor shots with higher motion.

6. REFRAMING TECHNIQUES
We now have a sequence of shots that represents a reframed ver-

sion of our input video. The quality of this video is suboptimal.
User studies (section 7) show that this automatically produced ver-
sion is not pleasant to watch since it is too shaky. This is mainly
due to annoying visual jumps coming from translational and scale
noise.

Therefore we use reframing techniques aiming at (1) stabilizing
shots to correct for this noise (lack of aesthetics) and (2) reestab-
lishing shots to establish the scene context before moving to close
shots (loss of important context information).

6.1 Simple Guidelines
Before detailing our reframing techniques, let us introduce some

good editing practices that we followed. We start by systematically
keeping the initial aspect ratio (16/9) for the generated framing.
Shots may be produced at different scales. An extreme long shot
(ELS) is a framing close to the initial full HD format (ranging from
1920×1080 to 1600×900). The long shot (LS) is a smaller fram-
ing (width from 1600 to 1100) useful to make a rather stable shot
that can easily cover movement without reframing. The medium
shot (MS) is the most popular and its width ranges from 1100 to
700. Finally, close-up (CU: width from 700 to 400) and extreme
close-up (ECU: width< 400) are smaller framings for showing de-
tails. Regarding the duration of the shots, we do not impose strong
constraints since the decision to extend a shot can be as effective as

fj fj+1Zoom Shot

zoom level z viewport center (x,y)

mixed shot

Fixed Shot

Figure 9: Reframing on two shots

the decision to cut it. We simply ensure that handled shots include
at least 10 frames. Generally speaking we try to produce a retar-
geted video that maintains a clear and continuous action. Therefore
we follow the general style of continuity editing [2].

6.2 Bottom-up Reframing
At the bottom level (individual shot-level) we stabilize each shot

to ensure its spatial continuity. This stabilization is a two-step pro-
cess. First we classify the shot into fixed, zooming or dolly types
of shots. In a fixed shot, the focus does not change. A zooming
shot results only from an optical zoom into an object. In a dolly
shot, the camera is moving as if it was mounted on a train track,
parallel to the scene (pan-like motion). Some mixed shots exhibit
combinations of these types.

In the second step, each shot is stabilized according to its type.
For example, in the zoom shot of figure 9, the zoom level of each
frame of a zoom shot is interpolated using the values of the first and
last frame. For a detected fixed shot, since there are small variations
of the focus, we modify the center of each frame using the average
center.

Once we stabilize each shot individually, we work at the upper
level (inter-shot level) in order to smooth out the transitions be-
tween shots. In our example, if there is a discontinuity of the view-
port center of frames fj and fj+1, we create an additional short
mixed shot that interpolates both the zoom and position of the cen-
ter.

Additionally, also at the upper level, we apply another technique
called reestablishing shot (RS). A RS is often a medium or medium-
long shot. It usually follows a close-up and is used to help the
viewer better understand the context. In other words, it reminds the
audience the position of the viewport inside the scene. The figure
2 (third row) shows a RS. The first shot shows a close-up on the
speaker and the third is a close-up on a very different ROI (the left
board). Our system automatically produced a RS in between, upon
the detection of a ROI (the left hotspot of the third shot, represent-
ing the left board) that was not visible during the first shot (left
hotspot). Therefore the user is presented with a medium RS before
the second close-up.

7. RESULTS
To evaluate our proposed crowd-sourced video retargeting, we

posted several videos for users to watch through our zoomable
video player (see figure 1). The videos are recorded in high def-
inition using a fixed camera. The video sequences posted has a
range of different content, ranging from lecture, sports, and magic
tricks. Within a period of two weeks, we collected traces from 53
user sessions (one session for each viewed video). A total of 11183
interaction events are logged.

Retargeted versions of the video are created using the algorithms
described in the previous sections. In this section, we present re-
sults for three video sequences. The first two are magic tricks



videos, which we refer to as the card trick and the dice trick video
respectively. The third video sequence is a video of a rhythmic
gymnastics movement (introduced by figure 1 and 11), which we
refer to as the gymnastic video. We first describe the retargeted
videos in Section 7.1 and compare our results with saliency-based
methods. An analysis of the different shot types, along with their
distributions is done in section 7.2. We show that the distribution
of shot types in the retargeted video is consistent with those of the
collected traces. Then, we carried out a user study to assess the
quality of the retargeted shots (7.3).

7.1 Retargeted Video
We now describe two sample videos that our method produced.

We qualitatively compare our results with results generated by us-
ing visual attention models. Resulting videos are available at
http://www.youtube.com/user/AutoZap.

Figure 12 shows a selected set of original (HD) video frames
and their corresponding retargeted frames from the dice trick video.
In this trick, the magician is challenged to find the correct dice
number. He gives instructions to the girl: put the dice in the black
box (2 first rows), show the dice number to the camera (rows 3-5),
close the box and put it down on the table (row 6). He returns to the
table (row 7) and continues (row 8-9). One should notice the close-
up on the dice number (row 5). Another relevant close-up (row 8)
emerged and focused on the box: the critical object of interest for
understanding the trick. Just after, the reestablishing shot helps to
put the user into context for the rest of the trick.

We first highlight some shots of interest region in our video that
is hard to be reproduced by existing approaches. The close-up shot
on the dice number (row 5) in the retargeted video sequence is syn-
chronized with the instructions of the magician (“show the dice to
the audience”). Doing this automatically with content-based ap-
proach would require speech recognition to understand what the
magician has said and object recognition to identify the dice within
the scene. Both are hard problems that are challenging to solve.
This example stresses the importance of leveraging user behavior
to generate retargeted shots, since users naturally follows the in-
struction of the magician and zoom in to see the dice.

Figure 10 shows an example of salient regions in the dice trick
video, computed using Matlab SaliencyToolbox[17], which is based
on visual attention model, particularly, color, intensity, and orien-
tation. The left shows a frame from the video with salient regions
enclosed in yellow. The right shows the heatmap indicating the
salient regions. This example shows that the most salient region in
the video, according to the visual attention model is the back of the
magician, followed by the hand, a deck of cards on the table (which
is not even used in this trick), and finally the dice. This example
illustrate that visual attention model is not sufficient for detecting
interest regions in the video sequence.

Figure 10: Outputs from the saliency toolbox.

The interest regions detected using visual attention model on the
gymnastic video is shown in Figure 11 to further illustrate the effi-
cacy of our approach. The gymnastic video is a wide angle shot of a

Figure 11: Visual Attention Models vs. our ROI

gymnastic contest, with five gymnasts performing on the floor, sur-
rounded by audience, judges, and officials. The top image shows
the results obtained by the SaliencyToolbox. The salient regions
detected include doors, windows, notice boards, posters, and some
audience. The most interesting part of this video, however, is the
gymnasts. While the SaliencyToolbox managed to detect the gym-
nasts as salient regions, this detection is only possible after the op-
tion which gives skin colors more weight is turned on. On the other
hand, our method correctly detect the gymnasts as the ROI (the
middle figure). The bottom figure shows another frame from the
same sequence, with moving regions highlighted, as detected using
the blob tracking algorithm in OpenCV. Visual attention model that
assumes motion as a salient feature would have overestimated the
number of interesting regions in the frame. In this example, besides
the gymnasts, motions of audience and other gymnasts standing-by
are also detected.

7.2 Properties of Retargeted Shots
Having described two of our retargeted video sequences, we now

present some of their properties. Table 1 summarizes the distribu-



tion of shot types as captured by our logs. Shot types are clas-
sified into classes, ranging from extreme long shot (ELS) to ex-
treme close-up (ECU), as introduced in Section 6.1. The variety
of observed shot types is a clear indication that users effectively
used the zoom and scroll video interface for a better viewing ex-
perience. Shot distributions are not very similar among the three
video sequences, since they are strongly related to the content. The
Card Trick exhibits numerous close-ups (CU) and extreme close-up
(ECU), since the user is explicitly and orally encouraged to gaze at
playing cards. These results confirm the importance of the seman-
tic of the contents. This statement is also verified by a detailed
analysis of the gymnastic video: users who were relatives of one of
the gymnasts tended to track her by using close-ups.

shot ELS LS MS CU ECU
Dice Trick 17% 26% 29% 19% 9%
Card Trick 13% 25% 13% 24% 25%
Gymnastic 8% 23% 26% 31% 12%

Table 1: Statistics on shot types

Table 2 compares various versions of retargeted shots for the dice
video sequence. The first row (“User Traces”) shows the previously
discussed shot types ratios (in %). The following rows present shot
distributions for various versions of our retargeted video. The sec-
ond row (“Final”) is our final retargeted version that includes re-
framing techniques (Section 6) and the MCD estimator (see Section
4.3). The third row (“No RT”) is the retargeted version without re-
framing techniques produced with MCD. The fourth row (“ML”)
corresponds to an alternative version without reframing techniques
produced with Maximum Likelihood (ML) covariance estimator in-
stead of MCD.

The shot distributions of various versions provide some insights
into how our method works. First, we see that the shot distribution
for “Final” and “User Traces” are slightly different. Less ELS exist
for “Final” due to the retargeting that favors LS and MS. Indeed,
the retargeted version shows that for the dice video, all ELS shots
can be effectively replaced by smaller shots. We will see in the next
section that the user studies proved the effectiveness of this editing,
since most of them are satisfied with the quality. The number of
ECUs doubles. Second, using ML (commonly used in GMMs mod-
els), tend to produce bigger shots. This result justifies our prefer-
ence of MCD over ML for estimating the covariance matrices. The
final retargeted dice trick includes more CUs and ECUs since it fo-
cuses on a small object of interest (the dice), which are not found
if ML is used. A remarkable result is 54% LS, 27% = 13 + 14
close-ups of the “No RT” version. We can understand the cause
by watching the produced video: the focus changes rapidly from
close-ups to the LS. This is smoothed out by the “Final’ version
around MS thanks to reframing techniques.

Shots from ELS LS MS CU ECU
User Traces 17% 26% 29% 19% 9%

Final 0% 32% 38% 12% 18%
No RT 1% 54% 18% 13% 14%

ML 27% 32% 20% 19% 2%

Table 2: Statistics on shot types for different retargetings.

7.3 User Evaluations
Recall that the goal of video retargeting is to produce a visually

pleasant, yet informative video for a small display. To assess if our

results have achieved the two goals of video retargeting, we con-
ducted a user study, comparing retargeted video from our method
with two other video sequences produced from the same video.

Video Sequences. We choose the dice trick video as the clip for
user study. As a ground truth, we compare our retargeted video (de-
noted crowdsourced) to a version of retargeted video produced by
an expert user (denoted expert). This ground truth retargeted video
is produced by having the expert, who is well aware of the video
content and user interface, to watch the video using our zoomable
video player. His choices of viewports are used as input to pro-
duce the ground truth. On the opposite, we use either one of un-
retargeted video (i.e., always in zoom level 0, denoted nozoom), a
retargeted video generated from a chosen user trace (user), and a
retargeted video produced after Section 5 without reframing tech-
nique (noRT). The chosen user trace is a typical trace (zooming
and panning to regions similar to our retargeted video), except for
a short time when the user is not able to find the dice and has to
zoom out and in again to refocus on the dice in the video.

Methodology. We show three videos in random order to each
participant. The expert and crowdsourced versions are always
shown, whereas the third video is randomly chosen from one of the
remaining: nozoom, user or noRT. Users are asked to watch the
video clips and to rate the editing quality of the video. A user may
watch the video as many times as he wants. We assess the qual-
ity of the retargeted video by asking our participants the following
questions: (i) Is the editing quality of each video reasonable? (ii)
Does the video manage to convey the important information to un-
derstand the events in the video? The participants are asked to rate
each video in a rating of 1 (poorest) to 5 (best), as well as to make
qualitative comments on the video.

Participants. The user study involves 48 participants (28 Male,
20 Female). 16% of the participants have a prior experience in
video editing or cinematography. 18 participants are presented
noRT and user versions, 12 are presented nozoom.

Results. Respectively 87% and 79% of the participants find the
editing quality of expert and crowdsourced reasonable. Only
21% of users find the third video reasonable. Among the possi-
ble third video, nozoom is found to be most reasonable (41%),
while noRT is the least reasonable (5%). 22% of users find the
user video reasonable.

The expert and crowdsourced versions of the retargeted video
have an average rating of 3.6 each. The rating for the third videos
averaged to be only 2.35 (2.11 for noRT, 2.33 for user, 2.75 for
nozoom). There is no significant differences between the ratings
made by users with experience in video editing and cinematogra-
phy. These users rated expert 3.5, crowdsourced 3.3, and the
third sets of video 2 on average.

When asked if the video managed to convey useful information,
expert scores the highest with affirmative answers from 79% of
users, followed closely by crowdsourced. Interestingly, 66% of
the participants who watched user thinks that it still manages to
convey useful information. Surprisingly, none of the 12 users who
watch nozoom found it useful. The last two results validate the im-
portance of retargeting, and validates the usefulness of user traces
in choosing important regions to watch, even when it is done by
only one single user. Only 38% of users found that noRT managed
to be useful.

The results above shows that our crowdsourced version is only
slightly worse than the video retargeted manually by an expert user.

8. RELATED WORK
ROI Detection. ROI detection has many useful applications

for multimedia content, including ROI coding, progressive content



transmission, and image/video retargeting. Many ROI extraction
models have been proposed to automatically detect ROIs. They fall
into two main categories: content-based and usage-based. Content-
based approaches infer ROIs from the intrinsic properties of the
content, such as color, motion, and semantic. Usage-based ap-
proaches compute ROI from user feedback, whether implicit or ex-
plicit.

In the first case, visual attention models can be used to measure
the salience of important regions. In their influential work, Itti et
al. [11] detect ROIs with a saliency map computed from pyramid
maps for color, luminance, and orientation contrasts. Multimedia
content analysis may also help to estimate the ROI. In image retar-
geting, face and text detection naturally leads to potential ROI [13].
More generally, object-based or event-based segmentation can be
used to infer ROIs by decomposing a visual content [14, 15]. Our
approach in this paper does not rely on computational model of at-
tention, but rather, we rely on traces from user behavior, assuming
that the collective behavior of users naturally guide us to the ROI.
Our approach is thus an implicit usage-based approach.

Other usage-based approaches have been proposed in the litera-
ture. The first basic idea is to extract ROIs by directly analyzing
regions gazed by a user. In their work, [16] Ukita et al. use an eye-
mark recorder system to collect gaze points before extracting static
or moving regions of interest. Inspired by recent success of collab-
orative games, Huang et al [10] developed an online game called
Photoshoot for extracting image ROIs from shoot points playing
the role of gaze points. User interactions while browsing videos
have also been used to produce video previews. These previews
are composed of remarkable segments of the video automatically
inferred from the analysis of the browsing logs. Xie et al [18] have
studied mobile image browsers. They found that on small displays,
users tend to use more zooming and scrolling actions in order to
view interesting regions in detail. From this fact, they designed a
specific ROI extraction model from still images and so-called user
interest maps. Our work also extracts ROI from browsing logs but
we additionally tackle video retargeting and model both the impor-
tant regions and their dynamics.

Video Retargeting. To automatically retarget a video, Liu et
al. [13] analyzes a candidate set of cropping windows and chooses
an optimal cropping window that minimizes a distortion function
to crop the video before it is scaled. The cropping window can
change with motion in the video and is therefore adaptive. In the
context of ROI detection and tracking for stored video playback,
there have been attempts to model the ROI [6] based on the amount
of motion. Such models could help determine the ROI, without
human interaction with a display device. Multi-scale cropping [5]
dealt with automated tracking of multiple ROIs defined by motion
change. The aim was to minimize the number of ROI trajectories
within the video while covering all the ROIs.

To retarget general movies, careful handling is required for cam-
era motion: the initial cinematography must be preserved and mo-
tion artifacts must be avoided [13]. With our videos captured from
a fixed HD camera, aesthetic reframing and transitions are however
required. Cinematography is an art and only informal rules are
described to film various scenes [2]. These informal rules rather
led to more heuristic than formal models in computer science. For
instance, researchers in virtual reality and game design employed
cinematographic rules for real-time positioning of the virtual cam-
era [9]. Automating the film-making process for computer anima-
tion with a virtual cinematography system [12] is also a challenge.
Declarative language like Declarative Camera Control Language
have been devised for that purpose. Formal attempts were made
by MPEG7 standard (ISO/IEC 15938-5:2003) to specify tools for

describing video editing segment, shots and different types of tran-
sition. In a computer vision context, Doubek et al. [4] also explore
the use of some basic cinematographic rules for selecting the best
view available in a camera network. They then crop the selected
views with a virtual zoom and interpolate novel views to finally
produce one attractive video stream from many coming simulta-
neously from the network. Automatic video retargeting can benefit
from cinematography. Gleicher et al. [7] propose to improve appar-
ent camera movements in order to better follow cinematographic
conventions. For example, they use virtual pans to better show
moving objects.

9. CONCLUSION
This paper proposes an automated approach to retarget a high-

resolution video for display on small screens by exploiting col-
lective users wisdom through a zoomable video player. Our ap-
proach relies on historical user traces to select regions that effec-
tively convey the message of the video and cinematography rules
to improve the visual quality of the retargeted video. Our usage-
based approach is a natural complement to previous retargeting
method based on content analysis. Our approach is able to cor-
rectly identify good ROIs in scenarios that is difficult for content-
based approach, such as understanding voice instructions or identi-
fying person-of-interest in a crowded video. A user study with 48
participants shows that the retargeted video produced by hand by
an expert is only slightly better than those produced automatically
using our approach.

Several directions can be taken to continue this research. We
plan to investigate the possibility of including split-screen effects,
possibly showing two or more ROIs at once automatically. An
example where this is useful is in our lecture video. One screen
could show the lecturer, while another shows the whiteboard. We
are also interested in exploiting the interaction traces to profile the
users, identifying types of regions that a particular user (or a class
of users) are interested in. Or, instead of analyzing traces of many
users on one video, we profile users by analyzing traces of one user
on many videos. Users profile can then be used to generate per-
sonalized retargeted video. For instance, a student who is a visual
learner might prefer to focus on slides or whiteboard during the lec-
ture, while a student who prefer aural learning style might want to
focus on the lecturer instead.

There are potential synergies between the crowd-sourced approach
and content-based approach in the context of video retargeting. On
one hand, crowd-sourcing would help content-based approach to
understand the semantic of the video. For instance, in the dice
trick video, the ROIs allow content analysis algorithms to correlate
between the word “dice” and the dice object in the video as hint
to object recognition. On the other hand, content-based approach
could supplement crowd-source techniques, for instance, by help-
ing to track the motion of object-of-interest or to position object of
interest according to the rule of thirds. We plan to pursue the col-
laboration between the two approaches as the next agenda of our
research.
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Figure 12: Retargeted video: selected frames (left) and retar-
geted frames (right)


