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Abstract

The Two-Stage Learning-to-Defer framework has
been extensively studied for classification and,
more recently, regression tasks. However, many
contemporary applications involve both classifi-
cation and regression in an interdependent man-
ner. In this work, we introduce a novel Two-Stage
Learning-to-Defer framework for multi-task learn-
ing that jointly addresses these tasks. Our ap-
proach leverages a two-stage surrogate loss fam-
ily, which we prove to be both (G, R)-consistent
and Bayes-consistent, providing strong theoretical
guarantees of convergence to the Bayes-optimal
rejector. We establish consistency bounds explic-
itly linked to the cross-entropy surrogate family
and the L;-norm of the agents’ costs, extending
the theoretical minimizability gap analysis to the
two-stage setting with multiple experts. We val-
idate our framework on two challenging tasks:
object detection, where classification and regres-
sion are tightly coupled, and existing methods fail,
and electronic health record analysis, in which we
highlight the suboptimality of current learning-to-
defer approaches.

1. Introduction

Learning-to-Defer (L2D) integrates predictive models with
human experts—or, more broadly, decision-makers—to op-
timize systems requiring high reliability (Madras et al.,
2018). This approach benefits from the scalability of ma-
chine learning models and leverages expert knowledge to ad-
dress complex queries (Hemmer et al., 2021). The Learning-
to-Defer approach defers decisions to experts when the
learning-based model has lower confidence than the most
confident expert. This deference mechanism enhances
safety, which is particularly crucial in high-stakes scenarios
(Mozannar & Sontag, 2020; Mozannar et al., 2023). For
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example, in medical diagnostics, the system utilizes patient-
acquired data to deliver an initial diagnosis (Johnson et al.,
2023; 2016). If the model is sufficiently confident, its diag-
nosis is accepted; otherwise, the decision is deferred to a
medical expert who provides the final diagnosis. Such tasks,
which can directly impact human lives, underscore the need
to develop reliable systems (Balagurunathan et al., 2021).

Learning-to-Defer has been extensively studied in classifi-
cation problems (Madras et al., 2018; Verma et al., 2022;
Mozannar & Sontag, 2020; Mozannar et al., 2023; Mao
et al., 2023a) and, more recently, in regression scenarios
(Mao et al., 2024e). However, many modern complex tasks
involve both regression and classification components, re-
quiring deferral to be applied to both components simultane-
ously, as they cannot be treated independently. For instance,
in object detection, a model predicts both the class of an
object and its location using a regressor, with these outputs
being inherently interdependent (Girshick, 2015; Redmon
et al., 2016; Buch et al., 2017). In practice, deferring only
localization or classification is not meaningful, as decision-
makers will treat these two tasks simultaneously. A failure
in either component—such as misclassifying the object or
inaccurately estimating its position—can undermine the en-
tire problem, emphasizing the importance of coordinated
deferral strategies that address both components jointly.

This potential for failure underscores the need for a
Learning-to-Defer approach tailored to multi-task problems
involving both classification and regression. We propose a
novel framework for multi-task environments, incorporating
expertise from multiple experts and the predictor-regressor
model. We focus our work on the two-stage scenario, where
the model is already trained offline. This setting is relevant
when retraining from scratch the predictor-regressor model
is either too costly or not feasible due to diverse constraints
such as non-open models (Mao et al., 2023a; 2024e). We
approximate the true deferral loss using a surrogate deferral
loss family, based on cross-entropy, and tailored for the two-
stage setting, ensuring that the loss effectively approximates
the original discontinuous loss function. Our theoretical
analysis establishes that our surrogate loss is both (G, R)-
consistent and Bayes-consistent. Furthermore, we study and
generalize results on the minimizability gap for deferral loss
based on cross-entropy, providing deeper insights into its
optimization properties.
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Our contributions are as follows:

(i) Novelty: We introduce two-stage Learning-to-Defer for
multi-task learning with multiple experts. Unlike previous
L2D methods that focus solely on classification or regres-
sion, our approach addresses both tasks in a unified frame-
work.

(ii) Theoretical Foundation: We prove that our surrogate
family is both Bayes-consistent and (G, R)-consistent for
any cross-entropy-based surrogate. We derive tight consis-
tency bounds that depend on the choice of the surrogate and
the L;-norm of the cost, extending minimizability gap anal-
ysis to the two-stage, multi-expert setting. Additionally, we
establish learning bounds for the true deferral loss, show-
ing that generalization improves as agents become more
accurate.

(iii) Empirical Validation: We evaluate our approach on
two challenging tasks. In object detection, our method
effectively captures the intrinsic interdependence between
classification and regression, overcoming the limitations of
existing L2D approaches. In EHR analysis, we show that
current L2D methods struggle when agents have varying
expertise across classification and regression—whereas our
method achieves superior performance.

2. Related Works

Learning-to-Defer builds on the foundational ideas of Learn-
ing with Abstention (Chow, 1970; Bartlett & Wegkamp,
2008; Cortes et al., 2016; Geifman & El-Yaniv, 2017; Ra-
maswamy et al., 2018; Cao et al., 2022; Mao et al., 2024a),
where the primary goal is to reject inputs when the model
lacks sufficient confidence. L2D extends this framework by
incorporating a comparison between the model’s confidence
and the confidence of experts.

One-stage L2D. Learning-to-Defer was first introduced
by Madras et al. (2018), who proposed a pass function
for binary classification, inspired by the predictor-rejector
framework of Cortes et al. (2016). Extending this concept to
the multi-class setting, Mozannar & Sontag (2020) proposed
a score-based approach and demonstrated that employing a
log-softmax multi-classification surrogate ensures a Bayes-
consistent loss. Several subsequent works have further ad-
vanced or applied this methodology in classification tasks
(Verma et al., 2022; Cao et al., 2024; 2022; Keswani et al.,
2021; Kerrigan et al., 2021; Hemmer et al., 2022; Benz
& Rodriguez, 2022; Tailor et al., 2024; Liu et al., 2024;
Montreuil et al., 2024). A seminal contribution by Mozan-
nar et al. (2023) identified limitations in prior approaches
(Mozannar & Sontag, 2020; Verma et al., 2022), highlight-
ing their suboptimality under realizable distributions. The
authors argued that Bayes-consistency, while foundational,

may not be the most reliable criterion in settings with a
restricted hypothesis set. To address this, they proposed
hypothesis-consistency as a more appropriate criterion in
such scenarios. Building upon this paradigm, subsequent ad-
vances in hypothesis-consistency theory (Long & Servedio,
2013; Zhang & Agarwal, 2020; Awasthi et al., 2022; Mao
et al., 2023b) have further refined the theoretical underpin-
nings of L2D. Notably, Mao et al. (2024c) established that
the general score-based formulation of classification L2D is
H-consistent. Mao et al. (2024d) introduced a loss function
achieving realizable-consistency, ensuring optimal perfor-
mance under realizable distributions. Moreover, L2D has
been successfully extended to regression tasks, with Mao
et al. (2024e) demonstrating its applicability in multi-expert
deferral settings.

Two-stage L2D. The increasing prominence of large pre-
trained models has spurred interest in applying L2D to set-
tings where agents (model and experts) are trained offline,
reflecting the practical reality that most users lack the re-
sources to train such models from scratch (Mao et al., 2023a;
Montreuil et al., 2024). Charusaie et al. (2022) compared
one-stage (online predictor) and two-stage (offline predic-
tor) L2D approaches, identifying trade-offs between the two
strategies. Mao et al. (2023a) proposed a predictor-rejector
framework for two-stage L2D that guarantees both Bayes-
consistency and hypothesis-consistency. Beyond classifi-
cation, Mao et al. (2024e) extended the two-stage L2D
framework to regression problems.

Despite significant progress, current two-stage L2D re-
search largely addresses classification and regression in-
dependently. However, many contemporary tasks involve
both regression and classification components, necessitating
their joint optimization. In this work, we extend two-stage
L2D to joint classifier-regressor models, addressing this
critical gap.

3. Preliminaries

Multi-task scenario. We consider a multi-task setting
encompassing both classification and regression problems.
Let X denote the input space, Y = {1,...,n} represent the
set of n distinct classes, and 7 C R denote the space of
real-valued targets for regression. For compactness, each
data point is represented as a triplet z = (z,y,t) € Z,
where Z = X x ) x T. We assume the data is sampled
independently and identically distributed (i.i.d.) from a
distribution D over Z (Girshick, 2015; Redmon et al., 2016;
Carion et al., 2020).

We define a backbone w € VW, or shared feature extractor,
such that w : X — Q. For example, w can be a deep net-
work that takes an input € X" and produces a latent feature
vector ¢ = w(z) € Q. Next, we define a classifier h € H,
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representing all possible classification heads operating on Q.
Formally, h is a score function defined as h : Q@ x Y — R,
where the predicted class is h(z) = arg maxycy h(q,y).
Likewise, we define a regressor f € F, representing all
regression heads, where f : @ — 7. These components are
combined into a single multi-head network g € G, where
G ={g:g) = (how),fouw() | we W, he
H, f € F}. Hence, g jointly produces classification and
regression outputs, h(q) and f(g), from the same latent
representation ¢ = w(z).

Consistency in classification. In classification, the pri-
mary objective is to find a classifier h € H that min-
imizes the true error &, (h), defined as &y, (h) =

g ) [€o1(h(z),y)]. The Bayes-optimal error is given by

&, (H) = infreqs E,, (h). However, directly minimizing
&y, (R) is challenging due to the non-differentiability of
the true multiclass 0-1 loss (Zhang, 2002; Steinwart, 2007;
Awasthi et al., 2022). This motivates the introduction of
the cross-entropy multiclass surrogate family, denoted by
OF - H XA XY — R*, which provides a convex up-
per bound to the true multiclass loss fp1. This family is
parameterized by v > 0 and encompasses standard surro-
gate functions widely adopted in the community such as the
MAE (Ghosh et al., 2017) or the log-softmax (Mohri et al.,
2012).

o _ ([ SyeyeCrenmr—1)
" tog (Syey eI v 1.
)

The corresponding surrogate error is defined as gy (h) =
E(z,y) [®61 (h(z),y)], with its optimal value given by
Epy, (H) = infrew Eay, (h). A crucial property of a surro-
gate loss is Bayes-consistency, which guarantees that min-
imizing the surrogate generalization error also minimizes
the true generalization error (Zhang, 2002; Steinwart, 2007;
Bartlett et al., 2006; Tewari & Bartlett, 2007). Formally, ®f,
is Bayes-consistent with respect to £y if, for any sequence
{hi}ren C H, the following implication holds:

k—o0

Eay, (hy) —
— Eup, (hie) — EB () 222 0.

Egy. (H) 0

@)

This property assumes that H = H,y;, a condition that does
not necessarily hold for restricted hypothesis classes such
as Hin or Hreru (Long & Servedio, 2013; Awasthi et al.,
2022). To address this limitation, Awasthi et al. (2022)
proposed H-consistency bounds. These bounds depend on
a non-decreasing function I' : RT™ — R and are expressed

as:
Eay, (h) = gy (M) + Uy (H)

>
T (&0 () = 8, (H) + Use, (1)), ®

where the minimizability gap Uy,, (#{) measures the dispar-
ity between the best-in-class generalization error and the
expected pointwise minimum error: U, (1) = £ (M) —
E, [ infren Eyju[lo1 (h(z), y)]]. Notably, the minimizabil-
ity gap vanishes when H = H,y (Steinwart, 2007; Awasthi
et al., 2022). In the asymptotic limit, inequality (3) guaran-
tees the recovery of Bayes-consistency, aligning with the
condition in (2).

4. Two-stage Multi-Task L2D: Theoretical
Analysis

4.1. Formulating the Deferral Loss

We extend the two-stage predictor-rejector framework, orig-
inally proposed by Mao et al. (2023a), to a multi-task
context. We define an offline-trained model represented
by the multi-task model ¢ € G defined in Section 3.
We consider J offline—trained experts, denoted as M;
for j € {1,...,J}, where each expert produces predic-
tions mj(z) = (mh(x),m]f(w)) with m/(z) € Y and
mf (z) € T. The predictions mj( x) belong to the corre-
spondlng prediction space M, i.e., m;(z) € M;. The
combined predictions of all .J experts are represented as
m(z) = (my(x),...,my(x)), which lies in the joint pre-
diction space M. We use the notation [J] = {1,...,J}
exclusively to denote the set of experts and define the agent
space A = {0} U [J] with |A| = J + 1, the number of
agents (model and experts) that we have in our system.

To allocate the decision, we define a rejector functionr € R,
where r : X x A — R. The rejector determines which
agent should be assigned the decision by following the rule
r(z) = argmax;c 4 7(z,7). This formulation naturally
leads to the deferral 10ss e : R X G X Z x M — R*:

Definition 4.1 (True deferral loss). Let an input x € &, for
any r € R, we have the true deferral loss:

laei(r, g,m, 2) = ¥ ci(g(x), m;(x), 2)1p(a)=j,

.
I M“
o

with a bounded cost ¢; that quantifies the cost of allocating
a decision to the agent j € A. When the rejector r € R
predicts 7(z) = 0, the decision is allocated to the multi-
task model g. This allocation incurs a general cost cg,
which is defined in this context as co(g(x), z) = p(g(z), 2),
where p: Y x T x Z — R™ represents a general function
capturing the discrepancy between the model’s prediction
g(x) and the ground truth z. Conversely, when the rejector
predicts r(x) = j for some j > 0, the decision is de-
ferred to expert j, resulting in a deferral cost ¢; defined as
cj(mj(z), z) = p(m;(z), z) + B, where m;(z) denotes
the prediction by expert j, and 3; > 0 accounts for the in-
herent cost associated with querying expert j. For example,
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B3; could reflect the resources, effort, or time required to
obtain the expertise from expert j.

Optimal deferral rule: In Definition 4.1, we introduced
the true deferral loss, {4er, which we aim to minimize by
identifying the Bayes rejector € R that minimizes the true
error. To formalize this, we analyze the pointwise Bayes
rejector 75 (z), which minimizes the conditional risk Cy,,.
The true risk is given by &, (g,r) = E,[Ce,,(g,7, z)]. The
following Lemma 4.2 can be established.

Lemma 4.2 (Pointwise Bayes Rejector). Given an input
x € X and a distribution D, the optimal rejection rule that
minimizes the conditional risk Cy,,, associated with the true
deferral loss £ is defined as:

0 lf glrelg Ey,t\x[CO] S ]n;g]l] ]Ey,t|$ [Cj]

j otherwise,

The proof is provided in Appendix B. Lemma 4.2 estab-
lishes that the rejector » € R optimally determines whether
to utilize the multi-task model g € G or to defer to the
most cost-effective expert. Specifically, the rejector defers
to the expert j that minimizes the expected deferral cost,
Ey ¢12[cj(g(x), m;(x), z)], whenever the expected cost of
the optimal multi-task model, inf yeg E,, ;15 [co(g(x), 2)], ex-
ceeds the minimum expected cost of the most confident
expert.

Although the true deferral loss, L4, and its corresponding
Bayes rejector were introduced in Lemma 4.2, the prac-
tical computation of this rejector is hindered by the non-
differentiability of {g.r (Zhang, 2002).

4.2. Surrogate Loss for Two-Stage Multi-Task L2D

Introducing the Surrogate: To address challenges analo-
gous to those posed by discontinuous loss functions (Berk-
son, 1944; Cortes & Vapnik, 1995), we formalize surro-
gate losses with desirable analytical properties. Specifi-
cally, we use the cross-entropy multiclass surrogate loss
PF R x X x A— RT that is convex and upper-bounds
the true multiclass loss £y1. This surrogate family is defined
in Equation 1.

Mao et al. (2024e) introduced a convex, upper-bound surro-
gate for the frue deferral loss. Building on this, we incor-
porate new costs ¢; to capture the interdependence between
classification and regression tasks. The resulting surrogate
family, @4, : R x G X M x Z — R*, yields Lemma 4.3:

Lemma 4.3 (Surrogate deferral losses). Let x € X be a
given input and ®f, a multiclass surrogate loss family. The
surrogate deferral losses @y, for J + 1 agents are defined

as:’

(I)Zef(ragamvz) = Tj (g(x),m(x),z) (I)gl(’l",l‘,j),

M

7=0
(4)
with the aggregated costs T, (g(z),m(z),z) =

S cilg(a), mi(x), 2)Liz;.

The surrogate deferral loss family, ®f, aggregates the
weighted surrogate losses for each possible decision: defer-
ring to one of the J experts or utilizing the model directly.
The weights 7;¢ 4 represent the cumulative costs associated
with each deferral path. Specifically, the weight 7y captures
the total deferral cost across all experts, serving as a base-
line for deferral decisions. Conversely, the weights 7;¢
quantify the combined cost of utilizing the model while
deferring to all experts except expert j.

The proposed surrogate family is broadly applicable and
only requires ®f; to admit an R-consistency bound. Fur-
thermore, the formulated costs ¢; accommodate any multi-
task setting.

Consistency of the Surrogate Losses: In Lemma 4.3, we
established that the surrogate losses serve as a convex upper
bound for the true deferral loss. However, it remains to
be shown whether this surrogate family provides a faith-
ful approximation of the target true loss, ¢4.¢. Specifically,
the relationship between r*(x), the pointwise optimal re-
jector minimizing a surrogate loss from the family, and
rB(z), the pointwise Bayes-optimal rejector for the true
loss, is not immediately evident. To address this, we ana-
lyze the discrepancy between the surrogates’ excess risk,
Eoy (9,7) — Ejf)é,er(g ,R), and the excess risk under the true
loss, E,.(9,7) — €L (G, R). This analysis is critical for
understanding the surrogates’ consistency, as explored in
prior works (Steinwart, 2007; Zhang, 2002; Bartlett et al.,
2006; Awasthi et al., 2022).

Using consistency bounds from (Awasthi et al., 2022; Mao
et al., 2024b), we present Theorem 4.4, which establishes
the (G, R)-consistency of the surrogate deferral loss family.

Theorem 4.4 ((G, R)-consistency bounds). Let g € G be
a multi-task model. Suppose there exists a non-decreasing
function TV : Rt — RT for v > 0, such that the R-
consistency bounds hold for any distribution D:

Eay, (r) — €y (R) + Uy (R) =
]'—W(gfm (T) - gfn (R) + ufm (R))7

then for any (g,r) € G x R, any distribution D and any
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T € X,

E0y(9:7) = EL (G, R) + Uy, (G, R) <
T (ay,(r) = €4y, (R) + Uny (R))
+Eeo(9) — €60 (G) +Ueo (9),

where T (u) = |71 (H‘FH ) with TV (u) = T4 (u),

and for the log-softmax surrogate, T"=*(u) = % log(1 +
u) + 5% log(1 — u).

The proof of Theorem 4.4, along with additional bounds
for v > 0, is provided in Appendix C. Theorem 4.4 es-
tablishes sharper bounds than those in Mao et al. (2024e).
Our bounds are specifically tailored for the cross-entropy
surrogate family and explicitly depend on the parameter v.
Furthermore, the theorem shows that the tightness of these
bounds is governed by the L-norm of the aggregated costs,
71

Moreover, we show that our surrogate losses are (G, R)-
consistent for a multiclass surrogate family ®g; that is
R-consistent. Assuming R = Ry and G = Gy, the
minimizability gaps vanish, as demonstrated in Steinwart
(2007). Therefore, by minimizing the surrogates’ deferral
excess risk while accounting for the minimizability gap, we

establish that Egv (%) — Sq)u (Ran) + Uasy (Ran) i
0. Since the multl task model g is tralned offline, it
is reasonable to assume that the cg-excess risk satisfies
Eeo(9K) fgf) (Gan) +Uey (Gan) K790, (). This result implies

that the left-hand side is bounded above by zero, leading to
k—o0

1 (9:7) — EL (Gan, Ran) + U (Gan, Ran) ——— 0, by
leveraging the properties of . Consequently, the following
corollary holds:

Corollary 4.5 (Bayes-consistency of the deferral surrogate
losses). Under the conditions of Theorem 4.4, assuming

k

(G, R) = (Gaus Ran) and Ec, (gi) — EL (Gan) 22990, the
surrogate deferral loss family ®j,, is Bayes-consistent with
respect to the true deferral loss £4.s. Specifically, minimizing
the surrogates’ deferral excess risk ensures the convergence
of the true deferral excess risk. Formally, for {ri}ren C R
and {gx }ren C G:

Eas, (12)

= gedqf(gka Tk)

* k oo
— Egy (Ran) =250 5
k—o00
— &L (Gt Ran) = 0.

This result demonstrates that as k& — oo, the surrogates
Y. achieve asymptotic Bayes optimality for both the multi-
task model g and the rejector r, effectively bridging the
theoretical gap between the surrogate losses and the true
deferral loss. Moreover, the pointwise optimal rejector 7* ()
converges to a close approximation of the pointwise Bayes-
optimal rejector rZ(z), yielding a deferral rule consistent

with the structure described in Lemma 4.2 (Bartlett et al.,
2006).

Analysis of the minimizability gap: As shown by
Awasthi et al. (2022), the minimizability gap does not van-
ish in general. Understanding its conditions, quantifying
its magnitude, and identifying mitigation strategies are es-
sential to ensuring that surrogate-based optimization aligns
with task-specific objectives.

We provide a strong and novel characterization of the mini-
mizability gap in the two-stage setting with multiple experts,
extending the results of Mao et al. (2024f), who analyzed
the gap in the context of learning with abstention (constant
cost) for a single expert and a specific distribution.

Theorem 4.6 (Characterization Minimizability Gaps). As-
sume R symmetric and complete. Then, for the cross-
entropy multiclass surrogates ®f, and any distribution D,
it follows for v > 0:

71 () v=1
. 1701 = 170 v=2
Cor, =\ 241 17 ve(1,2)

1 2—v
1 = 2 — .
T sz 0Tk " ) — ||T||1:| otherwise,
then the minimizability gap is,

Uny (R) = &, (R) — Eulink C (r,2)]

Wlth? == {Ey,tll’[?OL ey
Tj = Zi:o ¢k 1y, and the Shannon Entropy H.

Ey +|2([T 5]}, the aggregated costs

We provide the proof in Appendix D. Theorem 4.6 charac-
terizes the minimizability gap Usy (R) for cross-entropy
multiclass surrogates over symmetric and complete hypoth-
esis sets R. The gap varies with v > 0, exhibiting distinct
behaviors across different surrogate. For v = 1, the gap
is proportional to the Shannon entropy of the normalized
expected cost vector ﬁ increasing with entropy and re-
flecting higher uncertainty in misclassification distribution.
At v = 2, it simplifies to the difference between the L-
norm and L.,-norm of 7, where a smaller gap indicates
concentrated misclassifications, reducing uncertainty. For
v € (1,2), the gap balances the entropy-based sensitivity
at v = 1 and the margin-based sensitivity at v = 2. As
v — 17T, it emphasizes agents with higher misclassification
counts; as v — 27, it shifts toward aggregate misclassifica-
tion counts. For v < 1, where p = 2%1, € (0,1), the gap
is more sensitive to misclassification distribution, increas-
ing when errors are dispersed. For v > 2, where p < 0,
reciprocal weighting reduces sensitivity to dominant errors,
potentially decreasing the gap but at the risk of underem-
phasizing critical misclassifications.
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In the setting of learning with abstention and a single expert
(J = 1), assigning costs 79 = 1 and 77 = 1 — c recovers the
minimizability gap introduced in (Mao et al., 2024f). Thus,
our minimizability gap can be seen as a generalization to
multiple experts, non-constant costs, and to any distribution
D.

4.3. Generalization Bound

We aim to quantify the generalization capability of our
system, considering both the complexity of the hypothe-
sis space and the quality of the participating agents. To
this end, we define the empirical optimal rejector 72 as the
minimizer of the empirical generalization error:

K
1

~B _ :

r° =arg ?é%% e kg_l Caet(g, M, 1, 21, (©)

where (4. denotes the true deferral loss function. To char-
acterize the system’s generalization ability, we utilize the
Rademacher complexity, which measures the expressive
richness of a hypothesis class by evaluating its capacity to
fit random noise (Bartlett & Mendelson, 2003; Mohri et al.,
2012). The proof of Lemma 4.7 is provided in Appendix E.

Lemma 4.7. Let L1 be a family of functions mapping X
to [0, 1], and let Ly be a family of functions mapping X to
{0, ].} Deﬁne L= {lllg RS ,Cl, ly € EQ} Then, the
empirical Rademacher complexity of L for any sample S of
size K is bounded by:

Rs(L) < Rs(L1) + Rs(La). ™)

For simplicity, we assume costs co(g(x),z) =
601(h(x),y) + greg(f(x)ﬂf) and Cj>0(mj<x)az) =
co(mj(z),z). We assume the regression loss fr, to be
non-negative, bounded by L, and Lipschitz. Furthermore,
we assume that mf;’j is drawn from the conditional
distribution of the random variable M Jh givenparameters
{X = zx,Y = y}, and that miﬂ. is drawn from the
conditional distribution of M Jf given {X = x, T = t}.
We define the family of deferral loss functions as
Laet = {laet : G X R X M x Z — [0,1]}. Under these
assumptions, we derive the generalization bounds for the
binary setting as follows:

Theorem 4.8 (Learning bounds of the deferral loss). For
any expert M;, any distribution D over Z, we have with
probability 1 — ¢ for § € [0,1/2], that the following bound
holds at the optimum:

log1/6

Eray (s £.7) < Egyy (I, £7) + 2Ruc (Laep) +1] =57

with

J
R (Lag) < 59 (H) + Rie(F) + S Q)

J=1

+ (imaxf,eg(mjf-,t) + Q)D%K(R%

j=1

with Q(m?,y) = %D(m;‘ # y)exp (—%D(m? # y)) +
R p(mt2y)/2(R)-

We prove Theorem 4.8 in Appendix F. The terms Rg (H)
and R (F) denote the Rademacher complexities of the
hypothesis class H and function class F, respectively, indi-
cating that the generalization bounds depend on the com-
plexity of the pre-trained model. The term Q(m;‘, y) cap-
tures the impact of each expert’s classification error on
the learning bound. It includes an exponentially decay-

ing factor, w exp —%ﬁy) , which decreases
rapidly as the sample size K grows or as the expert’s error
rate D(mé’ # y) declines (Mozannar & Sontag, 2020). This
reflects the intuition that more accurate experts contribute
less to the bound, improving overall generalization. Finally,
the last term suggests that the generalization properties of
our true deferral loss depend on the expert’s regression

performance.

5. Experiments

In this section, we present the performance improvements
achieved by the proposed Learning-to-Defer surrogate in a
multi-task context. Specifically, we demonstrate that our ap-
proach excels in object detection, a task where classification
and regression components are inherently intertwined, and
where existing L2D methods encounter significant limita-
tions. Furthermore, we evaluate our approach on an Elec-
tronic Health Record task, jointly predicting mortality (clas-
sification) and length of stay (regression), comparing our
results with Mao et al. (2023a; 2024e).

For each experiment, we report the mean and standard devi-
ation across four independent trials to account for variability
in the results. All training and evaluation were conducted
on an NVIDIA H100 GPU. We give our training algorithm
in Appendix A. Additional figures and details are provided
in Appendix G. To ensure reproducibility, we have made
our implementation publicly available.

5.1. Object Detection Task

We evaluate our approach using the Pascal VOC dataset
(Everingham et al., 2010), a multi-object detection bench-
mark. This is the first time such a multi-task problem has
been explored within the L2D framework as previous L2D
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approaches require the classification and regression compo-
nent to be independent (Mao et al., 2023a; 2024e).

Dataset and Metrics: The PASCAL Visual Object
Classes (VOC) dataset (Everingham et al., 2010) serves
as a widely recognized benchmark in computer vision for
evaluating object detection models. It consists of annotated
images spanning 20 object categories, showcasing diverse
scenes with varying scales, occlusions, and lighting condi-
tions. To assess object detection performance, we report the
mean Average Precision (mAP), a standard metric in the
field. The mAP quantifies the average precision across all
object classes by calculating the area under the precision-
recall curve for each class. Additionally, in the context of
L2D, we report the allocation metric (All.), which represents
the ratio of allocated queries per agent.

Agents setting: We trained three distinct Faster R-CNN
models (Ren et al., 2016) to serve as our agents, differen-
tiated by their computational complexities. The smallest,
characterized by GFLOPS = 12.2, represents our model
geGwithG ={g:g(z)=(how(x),fow(x))|we
W, h € H, f € F}. The medium-sized, denoted as Expert
1, has a computational cost of GFLOPS = 134.4, while the
largest, Expert 2, operates at GFLOPS = 280.3. To account
for the difference in complexity between Experts 1 and 2,
we define the ratio Rg = 280.3/134.4 and set the query
cost for Expert 1 as 51 = f2/R¢. This parameterization
reflects the relative computational costs of querying experts.
We define the agent costs as cy(g(x), z) = mAP(g(x), 2)
and c;e1(m; (), z) = mAP(m;(x), z). We report the per-
formance metrics of the agents alongside additional training
details in Appendix G.1.

Rejector: The rejector is trained using a smaller version of
the Faster R-CNN model (Ren et al., 2016). Training is per-
formed for 200 epochs using the Adam optimizer (Kingma
& Ba, 2017) with a learning rate of 0.001 and a batch size
of 64. The checkpoint achieving the lowest empirical risk
on the validation set is selected for evaluation.

Results: In Figure 5.1, we observe that for lower cost
values, specifically when 51 < 0.15, the system consistently
avoids selecting Expert 1. This outcome arises because the
cost difference between 1 and [39 is negligible, making it
more advantageous to defer to Expert 2 (the most accurate
expert), where the modest cost increase is offset by superior
outcomes. When 5, = 0.15, however, it becomes optimal
to defer to both experts and model at the same time. In
particular, there exist instances = € X where both Expert 1
and Expert 2 correctly predict the target (while the model
does not). In such cases, Expert 1 is preferred due to its
lower cost 3; < (2. Conversely, for instances x € X where
Expert 2 is accurate and Expert 1 (along with the model)
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Figure 1. Performance comparison across different cost values 32
on Pascal VOC (Everingham et al., 2010). The table reports the
mean Average Precision (mAP) and the allocation ratio for the
model and two experts with mean and variance. We report these
results in Appendix Table 3.

is incorrect, the system continues to select Expert 2, as 35
remains relatively low. For 52 > 0.2, the increasing cost
differential between the experts shifts the balance in favor of
Expert 1, enabling the system to achieve strong performance
while minimizing overall costs.

This demonstrates that our approach effectively allocates
queries among agents, thereby enhancing the overall per-
formance of the system, even when the classification and
regression tasks are interdependent.

5.2. EHR Task

We compare our novel approach against existing two-stage
L2D methods (Mao et al., 2023a; 2024¢). Unlike the first
experiment on object detection (Subsection 5.1), where clas-
sification and regression tasks are interdependent, this eval-
uation focuses on a second scenario where the two tasks can
be treated independently.

Dataset and Metrics: The Medical Information Mart for
Intensive Care IV (MIMIC-IV) dataset (Johnson et al., 2023)
is a comprehensive collection of de-identified health-related
data patients admitted to critical care units. For our analysis,
we focus on two tasks: mortality prediction and length-of-
stay prediction, corresponding to classification and regres-
sion tasks, respectively. To evaluate performance, we report
accuracy (Acc) for the mortality prediction task, which quan-
tifies classification performance, and Smooth L1 loss (sL.1)
for the length-of-stay prediction task, which measures the
deviation between the predicted and actual values. Addi-
tionally, we report the allocation metric (All.) for L2D to
capture query allocation behavior.
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Agents setting: We consider two experts, M; and Ma,
acting as specialized agents, aligning with the category al-
location described in (Mozannar & Sontag, 2020; Verma
et al., 2022; Verma & Nalisnick, 2022; Cao et al., 2024).
The dataset is partitioned into Z = 6 clusters using the
K -means algorithm (Lloyd, 1982), where Z is selected via
the Elbow method (Thorndike, 1953). The clusters are de-
noted as {C', Cs, ..., Cz}. Each cluster represents a sub-
set of data instances grouped by feature similarity, enabling
features-specific specialization by the experts. The experts
are assumed to specialize in distinct subsets of clusters based
on the task. For classification, M correctly predicts the out-
comes for clusters CM! = {C4, Cs, C4}, while My handles

cla

clusters C’glj = {C1, Cs, Cs}. Notably, cluster C is shared
between the two experts, reflecting practical scenarios where
domain knowledge overlaps. For regression tasks, M; is
accurate on clusters Crlfé = {C}, C5,Cs}, while My spe-
cializes in clusters C}> = {C', Cy, Cs}. Here too, overlap
is modeled, with cluster C; being common to both experts
and classification-regression task. Note that the category

assignments do not follow any specific rule.

We assume that each expert produces correct predictions for
the clusters they are assigned (Verma et al., 2022; Mozan-
nar & Sontag, 2020). Conversely, for clusters outside their
expertise, predictions are assumed to be incorrect. In such
cases, for length-of-stay predictions, the outcomes are mod-
eled using a uniform probability distribution to reflect uncer-
tainty. The detailed performance evaluation of these agents
is provided in Appendix G.2.

The model utilizes two compact transformer architectures
(Vaswani et al., 2017) for addressing both classification and
regression tasks, formally defined as G = {g : g(z) =
(h(x), f(z)) | h € H, f € F}. The agent’s costs are spec-
ified as co(g(z), 2) = A1 (h(z),y) + N Lo (f(), 1)
and cjcpy)(m;(z),z) = co(my(x),z) + B;. Consistent
with prior works (Mozannar & Sontag, 2020; Verma et al.,
2022; Mao et al., 2023a; 2024e), we set 5; = 0.

Rejectors: The two-stage L2D rejectors are trained using
a small transformer model (Vaswani et al., 2017) as the en-
coder, following the approach outlined by Yang et al. (2023),
with a classification head for query allocation. Training is
performed over 100 epochs with a learning rate of 0.003,
a warm-up period of 0.1, a cosine learning rate scheduler,
the Adam optimizer (Kingma & Ba, 2017), and a batch size
of 1024 for all baselines. The checkpoint with the lowest
empirical risk on the validation set is selected for evaluation.

Results: Table 5.2 compares the performance of our pro-
posed Learning-to-Defer (Ours) approach with two exist-
ing methods: a classification-focused rejector (Mao et al.,
2023a) and a regression-focused rejector (Mao et al., 2024e).
The results highlight the limitations of task-specific rejectors

and the advantages of our balanced approach.

Rejector Acc (%) sL1 All. Model ~ All. Expert 1~ All. Expert 2
Maoetal. (2023a) 71.3+.1 1.454+.03 .60+£.02 .01+.01 .39 .02
Mao et al. (2024e) 50.74+.8 1.18£.05 .38+.01 37 +.02 25+ .01
Ours 70.0+.5 1.28+.02 .66+.01 12 +.02 22+ .01

Table 1. Performance comparison of different two-stage L2D. The
table reports accuracy (Acc), smooth L1 loss (sL.1), and allocation
rates (All.) to the model and experts with mean and variance.

The classification-focused rejector achieves the highest clas-
sification accuracy at 71.3% but struggles with regression,
as reflected by its high smooth L1 loss of 1.45. On the
other hand, the regression-focused rejector achieves the best
regression performance with an sL.1 loss of 1.18 but per-
forms poorly in classification with an accuracy of 50.7%.
In contrast, our method balances performance across tasks,
achieving a classification accuracy of 70.0% and an sL1
loss of 1.28. Moreover, it significantly reduces reliance on
experts, allocating 66% of queries to the model compared to
60% for Mao et al. (2023a) and 38% for Mao et al. (2024e).
Expert involvement is minimized, with only 12% and 22%
of queries allocated to Experts 1 and 2, respectively.

Since the experts possess distinct knowledge for the two
tasks (C’xj and C’ng for M), independently deferring clas-
sification and regression may lead to suboptimal perfor-
mance. In contrast, our approach models deferral decisions
dependently, considering the interplay between the two com-

ponents to achieve better overall results.

6. Conclusion

We introduced a Two-Stage Learning-to-Defer framework
for multi-task problems, extending existing approaches
to jointly handle classification and regression. We pro-
posed a two-stage surrogate loss family that is both (G, R)-
consistent and Bayes-consistent for any cross-entropy-based
surrogate. Additionally, we derived tight consistency
bounds linked to cross-entropy losses and the L;-norm of
aggregated costs. We further established novel minimizabil-
ity gap for the two-stage setting, generalizing prior results
to Learning-to-Defer with multiple experts. Finally, we
showed that our learning bounds improve with a richer hy-
pothesis space and more confident experts.

We validated our framework on two challenging tasks: (i)
object detection, where classification and regression are
inherently interdependent—beyond the scope of existing
L2D methods; and (ii) electronic health record analysis,
where we demonstrated that current L2D approaches can
be suboptimal even when classification and regression tasks
are independent.
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Impact Statement

This paper advances the theoretical and practical understand-
ing of machine learning, contributing to the development
of more effective models and methods. While our research
does not present any immediate or significant ethical con-
cerns, we recognize the potential for indirect societal im-
pacts.
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A Two-Stage Learning-to-Defer Approach for Multi-Task Learning

A. Algorithm

Algorithm 1 Two-Stage Learning-to-Defer for Multi-Task Learning Algorithm

Input: Dataset {(z, Y, t;) } |, multi-task model g € G, experts m € M, rejector r € R, number of epochs EPOCH,
batch size B, learning rate 7.
Initialization: Initialize rejector parameters 6.
for : = 1 to EPOCH do
Shuffle dataset {(2x, Yk, tr) } 5,
for each mini-batch B C {(x, yk, tx) }1<_, of size B do
Extract input-output pairs z = (z,y,t) € B.

Query model g(x) and experts m(x). {Agents are pre-trained and fixed}
Evaluate costs co(g(z), z) and ¢j~o(m(z), 2). {Compute task-specific costs}
Compute rejector prediction r(x) = argmax;ec 4 r(z, j). {Rejector decision}
Compute surrogate deferral empirical risk £,

Edyy = =35 | Paer(g, 7, m, z)} . {Empirical risk computation }
Update parameters 6 using gradient descent:

0 0 —nVola,,- {Parameter update}

end for
end for

Return: trained rejector model r*.

We will prove key lemmas and theorems stated in our main paper.

B. Proof of Lemma 4.2

We aim to prove Lemma 4.2, which establishes the optimal deferral decision by minimizing the conditional risk.

By definition, the Bayes-optimal rejector rZ () minimizes the conditional risk Cy,,, given by:

Cedef(g7T7 .’E) = Ey,t|m[£def(garam7 Z)] (8)
Expanding the expectation, we obtain:
J
Cfdet‘(gﬂﬁv .1?) = IEy,ﬂa: ch(g(x)vmj(x)az)lr(z):j . (9)
j=0

Using the linearity of expectation, this simplifies to:
J
Cﬁdcr(gv T, .’E) = Z IE:y,t|9c [Cj (g(x)a m; (1’), Z)] ]‘T‘(Z‘)Zj' (10)
j=0

Since we seek the rejector that minimizes the expected loss, the Bayes-conditional risk is given by:

Cgef(g,r,a:) = geé{lféREy’tlx[édef(g7r,m, z)]. (11)
Rewriting this expression, we obtain:
J
Cra(9:7,@) = Inf By ypp | Inf colg(2), 2)Ly(a)=0 + ; ¢j(m; (), 2)1pa)=j | - (12)

This leads to the following minimization problem:

Cgef(gv T, '73) = min {;Ielg ]Ey,tI:v [Co(g(.f), Z)] 7;161%51] Ey7t\a: [Cj (mj (JE), Z)}} : (13)

12
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To simplify notation, we define:

o ) infeg Bygaleo(g(@), 2)], ifj =0, (14
! Ey 4z[cj(m;(z), 2)], otherwise.
Thus, the Bayes-conditional risk simplifies to:
Cﬁcf(g, r,x) = minc; (15)

jeEA J

Since the rejector selects the decision with the lowest expected cost, the optimal rejector is given by:

rP(z) = 0, i .;IelgEy’t‘x[CO(g( 7)) < gnelgl] By tjzlcj(m;(2), 2)]; (16)
4, otherwise.

This completes the proof. O

C. Proof Theorem 4.4

Before proving the desired Theorem 4.4, we will use the following Lemma C.1 (Awasthi et al., 2022; Mao et al., 2024e):
Lemma C.1 (R-consistency bound). Assume that the following R-consistency bounds holds for r € R, and any distribution

Eup, (1) — &4, (R) + Upo, (R) TV (Eay, (r) — gy (R) +Uay, (R))
thenforp € (py...ps) € Al and x € X, we get
J J J J
;pﬂr(w)# - jg%;opjlr(w#j = F”(jz_:opj‘l’(”n (rz,j) — gg;pﬂﬁl(n w‘))

Theorem 4.4 ((G, R)-consistency bounds). Let g € G be a multi-task model. Suppose there exists a non-decreasing function
'Y : Rt — Rt for v > 0, such that the R-consistency bounds hold for any distribution D:

Eay, (1) — €3y (R) + Uy, (R) =
D" (Eey (1) = Eig (R) + Uy (R)),
then for any (g,7) € G X R, any distribution D and any © € X,
Etaf(9:7) = € (G, R) + Uy, (G, R) <
T (Eay, () = Eay, (R) + Usy (R))
+ € (9) = E5(G) +Uey (9,

where T (u) = ||7||.T” ( =

Tl 1), with T (u) = T~ (u), and for the log-softmax surrogate, T"='(u) = % log(1 +
u) + 5% log(1 — u).

Proof. Let denote a cost for j € A ={0,...,J}:

= {mfgegEyum[cO(g( z),2)] ifj=0
’ Ey talc;(m(z), 2)] otherwise

Using the change of variables and the Bayes-conditional risk introduced in the proof of Lemma 4.2 in Appendix B, we have:

Cedet(g R, m) - gIél};\lCJ

17
Cope(g,m ) ZE?J t|o [cj m;(x), 2) | 1r(2)=;

13
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We follow suit for our surrogate ®g4.¢ and derive its conditional risk and optimal conditional risk.

J J
Cov = Eytio [zcj 2 (0,0 + Y (colglw). 2) + Y ei(mi(2), )1 ) @ (1. .)
j=1 i=1
J J
Cope = mf Ey t\x{z% ,2) @0 (2, 0) JFZ co(g )+Zcz(mz( ), 2) 1] @0, (ry @ J)}
j=1 i=1

Let us define the function v(m(x), 2) = min;¢[s ¢;(m;(x), z), where m;(x) denotes the model’s output and ¢; represents
the corresponding cost function. Using this definition, the calibration gap is formulated as ACy,, := Cy,, — C fjcr, where Cy,,
represents the original calibration term and C lif denotes the baseline calibration term. By construction, the calibration gap
satisfies ACy,, > 0, leveraging the risks derived in the preceding analysis.

ACy,, = Ey,t|x[ (9(x), 2)1p(z)=0 + Z ( +ﬁj) n( z):j]

—v(m(x),z) + (v(m(m), z) — 5%15‘1 ¢ (g(x), m(x), z))

Let us consider ACy,, = A1 + Ao, such that:

A= By e [ Leny=oplg(a). 2) + Z L= (pm;(2).2) + 8; ) | = v(m(a), 2) .
Az = (v(m(z). 2) — min, (g(x), m(2). 2))

By considering the properties of min, we also get the following inequality:

U(m(x),z) 5%1}410] (g(:v),m(x),z) < Ey,t|x[60(g(x)vz)] 7;2£Ey,t\x[00(g(x)az)] (19)
implying,
Al = A1 +20(9(2), 2) = T(9(2), 2) (20)

We now select a distribution for our rejector. We first define Vj € A,

ZJJ 16i(mj(z),2)
T30 (9(w),m (), 2)

Po =

and
To(g(x),2) + 307 45 & (m; (@), 2)
J Z;']:O Cj (g(x), mj(x)v Z)

DPjelg =

which can also be written as:

? .
P = T v
Injecting the new distribution, we obtain the following:
J J
ACay = |7l (;p@a(m,j) - gg;omsl (r,.J)) (22)

14
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Now consider the first and last term of ACy,,. Following the intermediate step for Lemma 4.3, we have:

J
Al = Ey,t\z[60<g(‘r)a Z)}lr(r)zo + Z]Ey,t\x[cj (mj (l‘), Z)]lr(:r):j - U(m(x)’ Z)

j=1
J
= Ey4jslco(9(2), ) Lrimy=o + Y Byejale;(m (@), 2)]Lro)=
j=1
J
— inf [Eypalco(9(@), 2)]Lr=o + Z By sielcs (m; (), 2)] Loy
j:
J J J
= ZEJ' (Z, mj)lr(w)¢0 + Z (Eo(g(a:), Z) + Z Ej/(mj/(x), Z)) 1r(w)7$j
=1 j=1 #5
J J J
- 7’1272 |:Z€j (mj'($>7 Z)lr(x);é() + Z (Eo(g($)7 Z) + Z Ej’("’nj'(‘m% Z)) 17‘(9:);£j:|
j=1 i=1 i#i
Then, applying a change of variables to introduce ||7||1, we get:
J J
7100 Lr(@)20 + [Tl D Pile(ayzi — nf [ 7]l1polr ()20 + 71 > piliayil
Jj=1 j=1

J J
= |7l ijlT(z);éj - 71272 17l ijlr(z);éj
j=0 7=0

We now apply Lemma C.1 to introduce I,

J J J J
ijlm#j - }ggzpﬂr(m#j < F( ij‘l’él(r, z,j) — gggz:pj‘bél(n x,j))
Jj=0 j=0 j=0 j=0
1 J J 1 J J 73
W[ ?jlr(z);ﬁj _7}2%2?]1%1)76]} SF(W[Z?j(I)Sl(ﬁx’j) _7}2%2?](1)’61(7”’377])}) 23)
7=0 j=0 =0

J=0

=3 ACq)def
A, < 7T ()

We reintroduce the coefficient A5 such that:
AC@’M

gl

ACy,, < ||?||1r( ) + A,

_ ACy,, . . .
ACrye < I (T + Epateleo9(x),2)] = 1 By yaleo(9(x), =) (upper bounding with Eq 19)

Mao et al. (2023b) introduced a tight bound for the comp-sum surrogates family. It follows for v > 0 the inverse
transformation T (u) = 7~ 1% (u):

1—v 2oy 220\ 27V
o oo (Y] Ly

L0 )og[1 + v] + 152 log[1 — v)] v=1

2-v 2-v 1\ 27V
<<1+v> 0o > 1| ve@,?2)

TDaTY v € [2,+00).

1
(v—1)nv—1

15
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We note T (u) = || 7[.T"” (= ). By applying Jensen’s Inequality and taking expectation on both sides, we get

[EdlR!

gfdef(ga T) - g@if(gv R) + ufdef(ga R)
< f” (gthr(/r) - £$dcf(R) + u<1>dcf<R)) + 560 (g) - ch; (g) + uCo (g)

D. Proof Theorem 4.6

Theorem 4.6 (Characterization Minimizability Gaps). Assume R symmetric and complete. Then, for the cross-entropy
multiclass surrogates @, and any distribution D, it follows for v > 0:

I () v=1
e I I v=2
i =\ it (Il = 117 ve(1,2)

v—1 —

1 J 7% 2—v N )
v [(Zkz(ﬂ’k ) —||T||1] otherwise,

then the minimizability gap is,

Uny (R) = &4, (R) — Euink Cy (r,2)]

withT = {Ey 112[To, - - -, Ey 4|2[T 7]}, the aggregated costs 7 = Z,‘izo ¢k 1y, and the Shannon Entropy H.

o7 (@)

Proof. We define the softmax distribution as s; = SSETRE where s; € [0,1]. Let 7, = 7,(g(z), m(x), z) with
j’eA '

7; € RT, and denote the expected value as 7 = E, ¢|,,[7]. We now derive the conditional risk for a given v > 0:

J
Coy(r: ) = ZEy,t\z[Tj]‘b&(ral‘,j)
3=0
1—-v
1 = ( T(w,j/)f’r‘(a:,j)) B 1:| 1
T ., e v

_ 1—5 Zj_o J Z] cA ) | # 20

708 (5 0 )5 Vo
_ {LZ}]:oTj {5]"-_1 - 1] v#1

— Z}]:o 7 log(s;) v=1

For v = 1: we can write the following conditional risk:

J
Cil (rw) = = 7 [rla.g) —log Y )] 2

3=0 JjEA
Then,
acy=1 3 N
de,fi)(r’ x)=—-T; + (jZOTj)si (26)
At the optimum, we have:
§*(2,4) = et 27)
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Then, it follows:

7 log (277@) (28)

C:I;’dl:f:1(R’x) - T
3'=0"J

-

<
I
=)

As the softmax parametrization is a distribution s* € A, we can write this conditional in terms of entropy with
T ={Tj}jen:

J
Cor ( YR, x) (Z k) Zsj log(s%)
=0

k=0
J _
~(Emals ) )
- ”T”lH(n;nl) (as 7; € RY)

For v # 1,2: The softmax parametrization can be written as a constraint Zj:o s; = 1 and s; > 0. Consider the objective

J
1 = v—1
B(s) = _VZTj [sj 71] (30)
7=0
We aim to find s* = (53, PN sj) that minimizes (30) subject to Z}]:o s; = 1. Introduce a Lagrange multiplier A for the

normalization Z}]:o s; = 1. The Lagrangian is:

zJ:? 1]+ A(l—zjjsj). (31)

L(s, \)
§=0
We take partial derivatives with respect to s;:
oL 1 5
— Fi(v—1)s’"2 — X\ = 0. 32
0s; 1-v 7i v )5i (32)
Since Y=L = —1, we get
Fisl2 = —A >0 = 5’2 = — forsomea >0, (33)
Ti
Hence
1
8 = (g) =2 (34)
Summing s; over {¢ =0, ..., J} and setting the total to 1 yields:
J 1
() =1 (35)
i=0
Let ;
1 1 1 v—2
R N T O =
Zk o(?) v=2 k=0
Therefore, for each 7,
1
1 = 2—v
x s v—2 o ’7—7‘,
sf = (?) = (37)
2T

17
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This {s}} is a valid probability distribution. Let

J 1
A=> 7"
k=0
Then the optimum distribution is
1
?iQ—u
s; = 1
Recall
1 J
_ =. v—1 _
B(s) = 17%2 j{sj 1]
7=0
At s}f,we have
1 L
_ 72V, T
()77 = (F)" = o
A
Hence , , ,
-1 1
_ v—1 1 71+Zf 1 _ 5= A
ZTJ' (s;) ! Tj Y= Av—1 ZTJ Y= Av—1
i=0 =0 §=0
Substituting back,
1 J o1 e, J
w#£1,2 _ o= —
R = (X)) -2
k=0 =0

We can express this conditional risk with a valid L(7%) norm as long as v € (1,2).

1
*,v#£1,2 — —
Car? A (Row) = — (Il = 171,

. J =
Forv =2: Since} ;_7; =S, we have

J J J
Cﬁf)if(r,x) = Z?j [1—sj(r)} = Z?j - Z?jsj(r).

j=0 j=0 j=0
Hence
J
inf C5=2(r,x) = S — sup E 7;84(r).
rer o reR 0
iz

« e e s v=2 . . e
Therefore, minimizing Cg_~(r, =) is equivalent to maximizing

Its partial derivative w.r.t. 7; is the standard softmax derivative:

9sj _ sj (65 —si) = {S’ (1 =si), ifi=j,

or; — 5; Si, otherwise.

Hence, for each 1,

oOF < _ s !
or, = Z;?j ajz = T;8; (1 - Si) + Z(:)?j (—Sj 81)

j= =

J#i

18
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Factor out s;:

gi = 8; [TL 1—s;) ZTJ s]] = s [ﬂ— (zJ:Tj Sj)}’ (50)

J#i J=0

because D, Tj 8j = Z;.]:O Tjsj —T; ;. Define F(r) = Z}]:o 7 sj(r). Then:

Setting 2713 = 0 for each 7 implies
si[Ti—F(r)] =0, Vi. (52)
Thus, for each index i:
S; = 0 or T = F(T) (53)

To maximize F'(r), notice that:

o If 7;+ is strictly the largest among all 7;, then the maximum is approached by making s;+ ~ 1, so F(r) =~ T;«. In the
softmax parameterization, this occurs in the limit 7;» — 400 and r, — —oo for k # i*.

« If there is a tie for the largest 7,;, we can put mass on those coordinates that share the maximum value. In any case, the
supremum is max; 7;.

Hence
5271; F(r) = Zax, Ti. 54
Because C5 =% (r,z) = S — F(r),
J
inf Cpl(rx) = S - sup F(r) = Zo?j = max T = [Tl — [[7llo (55)

Hence the global minimum of C§=2 is ||7||1 — ||7 |- In the “softmax” parameterization, this is only approached in the
limit as one coordinate r;» goes to 4+o0c and all others go to —co. No finite r yields an exactly one-hot s;(r) = 1, but the
limit is enough to achieve the infimum arbitrarily closely.

It follows for 7 = {7; }jc4 and v > 0:

7|1 H r=1
Hflh
. 7l = 17l v=
Mok Cou(r o) =13 L () - ve(1,2) (50)
1 2—v
= KZ,{:O 72 ) - ||?||1} otherwise
Building on this, we can infer the minimizability gap:
Upy(R) = €4, (R) — Eo| inf Cg, (r, )] (57)
O
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E. Proof Lemma 4.7

Lemma 4.7. Let L4 be a family of functions mapping X to [0, 1], and let L5 be a family of functions mapping X 1o {0,1}.
Define L = {lyls : Iy € L1,ls € Ly}. Then, the empirical Rademacher complexity of L for any sample S of size K is
bounded by:

~

Rs(L) < Rs(L1) + Rs(La). @)

Proof. We define the function 1) as follows:

Li+Ly — L1Lo

Vi bl — (it —1)y (58)

Here, Iy € £ and [y € Lo. The function ¢ is 1-Lipschitz as we have ¢ — (¢ — 1) for t = I3 + lo. Furthermore, given that
1) is surjective and 1-Lipschitz, by Talagrand’s lemma (Mobhri et al., 2012), we have:

Rs(Y(L1 + L2)) < Rs(L1 + L2) < Rs(L1) + Rs(La) (59)

This inequality shows that the Rademacher complexity of the sum of the losses is bounded by the sum of their individual
complexities. O

F. Proof Theorem 4.8

Theorem 4.8 (Learning bounds of the deferral loss). For any expert M, any distribution D over Z, we have with probability
1 =0 ford €[0,1/2], that the following bound holds at the optimum:

log1/6
2K

gquf(h7 f7 ’I") S ‘Ej&,ef(h7 f7 T) + 2%[{ (Edef) +
with

J
1
Ric(Lag) < Rk (H) + Ry (F) + > Q@ml.y)
j=1
J
+ (Z maxﬁ,eg(mf, t) + 2) Rr(R),
j=1

with Q(mlt,y) = 3D(m}} # y) exp (=g DM} # ) + Repmiy)/2(R).

Proof. We are interested in finding the generalization of v = (g,r) € L:

K
1
Rs(L) = =L Slelngkfdef 957y Ty Yioy bk, Mg )]

95 =1

= bupZO’k(ZCJ r(zr)= ]>
g€£

< EE [supZakcol (1) } Z]Eg[supZUkcj ()= j] (By the subadditivity of sup)
9eL rer
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Let’s consider j = 0:

1 1
KE [SupZakCol Tk) 0] = ?E {SupZG’k ]-h(rk);ﬁy+greg(f(irk)vbk)]lr(zk):o]

9€L k2 9€L k2
1 i Ly
< EEU bg;aklhm#ylrm) } e [Zlelgzmgéreg k), br)1 r(:rk)ZO]:|
1
< {59%1((7-[) + SRK(R)} + [ERK(]:) + SRK(R)} (using Lemma 4.7)
1
= ?RK(H) + Rk (F) + 2Rk (R)
(60)
Let’s consider j > 0:
1 K J K
L35, [ eutas] € b 38 [0 3 g syt
K= "lrerim o brerio o
J K 61)
Z o |: sup Z ngreg mk g7 bk)lr(rk):g}
=1 re’Rk 1
Using learning-bounds for single expert in classification (Mozannar & Sontag, 2020), we have:
1 D(mh #y KD(m" #y
KE [su};ZJkl h;éy]-?”(ﬁck) 1] < %exp (—(87&)) +RKD(m’L;£y)/2(R) (62)
(S

Applying it to our case:

D(mh KD(m"
— ZE [sup ZO’klmh,j#ylr(mk):j} < Z (w exp (-W) + RKD(m;.L;sy)/z(R)) (63)

7ER =1

For the last term,

J K J
1
74 Z - {sg};zgk&eg mk],b Ly(zp)= ]} Z (maxémg m; t)%K(R)) (64)
j=1 TeR =1 J=1
Then, it leads to:
1 J J
e (Lae) < 59 (M) + R (F) + D Qmifo) + (3 mac by (m] ) +2) R (R)
i=1 j=1
. D(mh KD(m"#q
with Q(m;’,y) = % exp <(83#y)> + RKD(m;?';éy)/Q(R) H

G. Experiments
G.1. PascalVOC Experiment

Since an image may contain multiple objects, our deferral rule is applied at the level of the entire image z € X, ensuring
that the approach remains consistent with real-world scenarios.

Model M; M,
mAP 39.5 43.3 528

Table 2. Agent accuracies on the CIFAR-100 validation set. Since the training and validation sets are pre-determined in this dataset, the
agents’ knowledge remains fixed throughout the evaluation.
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Cost B2 mAP (%) Model Allocation (%) Expert 1 Allocation (%) Expert 2 Allocation (%)

0.01 528 £0.0 0.0£0.0 0.0 £0.0 100.0 0.0
0.05 525 £0.1 73+£038 0.0£0.0 92.7£0.3
0.1 49.1 £ 0.6 48.0 £ 0.7 0.0£0.0 520+£0.2
0.15 442+ 04 68.1 £0.3 19.7 £ 04 122+ 0.1
0.2 42.0+£02 77.5+£02 225+0.5 0.0 £0.0
0.3 40.1£0.2 98.1 £0.0 1.9£0.1 0.0 £0.0
0.5 39.5+0.0 100.0 £ 0.0 0.0+ 0.0 0.0+ 0.0

Table 3. Detailed results across different cost values [32. Errors represent the standard deviation over multiple runs.

G.2. MIMIC-IV Experiments

MIMIC-IV (Johnson et al., 2023) is a large collection of de-identified health-related data covering over forty thousand
patients who stayed in critical care units. This dataset includes a wide variety of information, such as demographic details,
vital signs, laboratory test results, medications, and procedures. For our analysis, we focus specifically on features related
to procedures, which correspond to medical procedures performed during hospital visits, and diagnoses received by the
patients.

Using these features, we address two predictive tasks: (1) a classification task to predict whether a patient will die during
their next hospital visit based on clinical information from the current visit, and (2) a regression task to estimate the length
of stay for the current hospital visit based on the same clinical information.

A key challenge in this task is the severe class imbalance, particularly in predicting mortality. To mitigate this issue, we
sub-sample the negative mortality class, retaining a balanced dataset with K = 5995 samples, comprising 48.2% positive
mortality cases and 51.8% negative mortality cases. Our model is trained on 80% of this dataset, while the remaining 20% is
held out for validation. To ensure consistency in the results, we fixed the training and validation partitions.

Model M 1 M2

Accuracy 60.0 39.7 46.2
Smooth L1  1.45 231 1.92

Table 4. Performance of the agents on the MIMIC-IV dataset, evaluated in terms of accuracy and Smooth L1 loss. We fixed the
training/validation set such that the agents’ knowledge remains fixed throughout the evaluation.
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