
Neural networks

A. Carlier, J-Y. Tourneret

2024

A. Carlier, J-Y. Tourneret Neural networks 2024 1 / 35

Outline

1 Neural networks: multi-layer perceptron

2 Activation functions

3 Optimizers

4 Regularization

A. Carlier, J-Y. Tourneret Neural networks 2024 2 / 35

Neural network: multi-layer perceptron

x1

x2

x3

x4

ŷ

a[2]a[1]a[0] a[3] a[4]

A multi-layer perceptron can be decomposed into one input layer, one
output layer, and several hidden intermediate layers.
The network depth here is 4: 3 hidden layers plus 1 output layer.

A. Carlier, J-Y. Tourneret Neural networks 2024 3 / 35

Notations

Notations are a little heavy:

”()” denotes the index of a data sample in the training set (x (i))

”{}” denotes the current iteration in gradient descent (w{k})

”[]” denotes the layer index (a[c])

For example a(i)[c]{k}
j denotes the activation of the j-th neuron of layer c ,

computed from the i-th data sample, during the k-th iteration of gradient
descent.

In what follows we will try to simplify the notations whenever possible...

A. Carlier, J-Y. Tourneret Neural networks 2024 4 / 35

Multi-layer perceptron: Interpretation

Increasing the number of layers and the number of neurons in a multi-layer
perceptron increases the network’s capacity, and thus its separating ability.

A. Carlier, J-Y. Tourneret Neural networks 2024 5 / 35

Universal Approximation Theorem

Universal Approximation Theorem (Cybenko 1989)

Any function f , continuous, from [0, 1]m to R, can be approximated by a
multi-layer perceptron with a single hidden layer (and sigmoid activation)
provided that it has a large enough number of neurons (units).

N.B. The theorem has been proven with reLU function too.

This theorem does not say how to choose the best network architecture
and how to estimate the network parameters efficiently!

A. Carlier, J-Y. Tourneret Neural networks 2024 6 / 35

Multi-layer perceptron training

After the initialization phase, the training algorithm (based on gradient
descent) is composed of 4 steps that are repeated until convergence:

1 Forward pass from the input to the output layer;

2 Objective function computation at the end of the forward pass;

3 Objective function gradient computation to update parameters
from output and hidden layers;

4 Parameter update thanks to previously computed gradients.

A. Carlier, J-Y. Tourneret Neural networks 2024 7 / 35

Illustration of a multi-layer perceptron training

x1

x2

a
[1]
1

a
[1]
2

ŷ

a[1]a[0] a[2]

W [1]
1,1

W [1]
1,2

W [1]
2,1

W [1]
2,2

b[1]
1

b[1]
2

W [2]
1

W [2]
2

b
[2]
1

Let us simplify the notations by removing the layer index

A. Carlier, J-Y. Tourneret Neural networks 2024 8 / 35

Illustration of a multi-layer perceptron training

x1

x2

h1

h2

ŷ

w11

w12

w21

w22

b1

b2

w1

w2

b3


ŷ = σ(z) where z = w1h1 + w2h2 + b3

h1 = f (z1) where z1 = w11x1 + w21x2 + b1

h2 = f (z2) where z2 = w12x1 + w22x2 + b2

A. Carlier, J-Y. Tourneret Neural networks 2024 9 / 35

Multi-layer perceptron training

x1

x2

h1

h2

ŷ

w11

w12

w21

w22

b1

b2

w1

w2

b3


ŷ = σ(z) where z = w1h1 + w2h2 + b3

h1 = f (z1) where z1 = w11x1 + w21x2 + b1

h2 = f (z2) where z2 = w12x1 + w22x2 + b2

1) Forward pass from the input to the output layer:

ŷ = σ (w1f (w11x1 + w21x2 + b1) + w2f (w12x1 + w22x2 + b2)− b3)

A. Carlier, J-Y. Tourneret Neural networks 2024 10 / 35

Multi-layer perceptron training

2) Objective function computation at the end of the forward pass

J =
1

n

n∑
i=1

loss(ŷ (i), y (i))

where the loss can be the binary cross-entropy or the mean squared error.
3) Objective function gradient computation to correct output layer
parameters:
Using the chain rule (∂f (y)∂x = ∂f (y)

∂y
∂y
∂x), we get:

∂J

∂wj
=
∂J

∂ŷ

∂ŷ

∂z

∂z

∂wj
,

∂J

∂b3
=
∂J

∂ŷ

∂ŷ

∂z

∂z

∂b3
,

for j = {1, 2}

A. Carlier, J-Y. Tourneret Neural networks 2024 11 / 35

Multi-layer perceptron training
4) Objective function gradient computation to correct hidden layers
parameters:

∂J

∂wjj ′
=
∂J

∂ŷ

∂ŷ

∂z

∂z

∂hj ′

∂hj ′

∂zj ′

∂zj ′

∂wjj ′
,

∂J

∂bj
=
∂J

∂ŷ

∂ŷ

∂z

∂z

∂hj

∂hj
∂zj

∂zj
∂bj

,

for j , j ′ = {1, 2}.

5) Parameter update of synaptic weights in the output layer:

wj ← wj − α
∂J

∂wj

and the hidden layer:

wjj ′ ← wjj ′ − α
∂J

∂wjj ′
.

(biases are updated the same way)
A. Carlier, J-Y. Tourneret Neural networks 2024 12 / 35

Gradient backpropagation

In order to compute gradients with respect to synaptic weights:

∂J

∂wj
=
∂J

∂ŷ

∂ŷ

∂z

∂z

∂wj
,

and

∂J

∂wjj ′
=
∂J

∂ŷ

∂ŷ

∂z

∂z

∂hj ′

∂hj ′

∂zj ′

∂zj ′

∂wjj ′
,

It is interesting to compute first ∂J
∂wj

, and reuse the intermediate

computations to then compute ∂J
∂wjj′

.

This is the efficient algorithm of gradient backpropagation which is
applied from the last to the first layer of the network.

A. Carlier, J-Y. Tourneret Neural networks 2024 13 / 35

Gradient backpropagation

Another visualization:

A. Carlier, J-Y. Tourneret Neural networks 2024 14 / 35

Gradient backpropagation

Another visualization:

A. Carlier, J-Y. Tourneret Neural networks 2024 15 / 35

Outline

1 Neural networks: multi-layer perceptron

2 Activation functions

3 Optimizers

4 Regularization

A. Carlier, J-Y. Tourneret Neural networks 2024 16 / 35

Back to gradient computation

x1

x2

h1

h2

ŷ

w11

w12

w21

w22

b1

b2

w1

w2

b3


ŷ = σ(z) where z = w1h1 + w2h2 + b3

h1 = f (z1) where z1 = w11x1 + w21x2 + b1

h2 = f (z2) where z2 = w12x1 + w22x2 + b2

∂J

∂wij
=
∂J

∂ŷ

∂ŷ

∂z

∂z

∂hj

∂hj
∂zj

∂zj
∂wij

A. Carlier, J-Y. Tourneret Neural networks 2024 17 / 35

Back to gradient computation

∂J

∂wij
=
∂J

∂ŷ

∂ŷ

∂z

∂z

∂hj

∂hj
∂zj

∂zj
∂wij

We can compute:

∂z

∂hj
= wj

∂hj
∂zj

= f ′(zj)

where f ′ is the derivative of the activation function

∂zj
∂wij

= xi

A. Carlier, J-Y. Tourneret Neural networks 2024 18 / 35

Zoom on the sigmoid function

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

y = σ(x)

y = σ′(x)

The derivative of the sigmoid function has values in [0, 14], which reduces
the amplitude of the gradients propagated through the layers of the neural
network. This is known as the vanishing gradient problem.

A. Carlier, J-Y. Tourneret Neural networks 2024 19 / 35

The rectified Linear Unit function

x

y

y = reLU(x)

y = reLU′(x)

reLU(x) =

{
0 if x < 0
x else

(1)

A gradient that is always 1 in the activated domain eliminates the
vanishing gradient problem and greatly improves convergence.

A. Carlier, J-Y. Tourneret Neural networks 2024 20 / 35

Outline

1 Neural networks: multi-layer perceptron

2 Activation functions

3 Optimizers

4 Regularization

A. Carlier, J-Y. Tourneret Neural networks 2024 21 / 35

Gradient Descent

Algorithm: Gradient descent (D, α)

Initialize β{0} ← 0, k ← 0
WHILE no convergence DO

FOR j from 1 to p DO

β
{k+1}
j ← β

{k}
j − α∂J(β

{k})
∂βj

END FOR
k ← k + 1

END WHILE

Gradient descent requires computing J(β{k}) at every step,

J(β{k}) =
1

n

n∑
i=1

loss(ŷ (i), y (i))

i.e., it requires to perform n (number of training samples) network
predictions for each step, which is not convenient.

A. Carlier, J-Y. Tourneret Neural networks 2024 22 / 35

Stochastic gradient descent

The idea of stochastic gradient descent is to approximate J(β{k}) using a
small set of samples, called a mini-batch.

Gradient descent Stochastic gradient descent

Note: a mini-batch that is too small can generate too much noise on the
gradient estimation and prevent convergence.

In practice, we partition the training set into mini-batches, and call an
epoch the set of iterations required to predict the entire training set.

A. Carlier, J-Y. Tourneret Neural networks 2024 23 / 35

Stochastic Gradient Descent

Algorithm: Gradient descent (D, α, nb epochs, batch size)

Initialize β{0} ← 0, k ← 0
FOR e from 1 to nb epochs DO

FOR b from 1 to b n
batch sizec DO

Compute J(β{k}) = 1
batch size

∑batch size
i=1 loss(ŷ (i), y (i))

FOR j from 1 to p DO

β
{k+1}
j ← β

{k}
j − α∂J(β

{k})
∂βj

END FOR
k ← k + 1

END FOR
END WHILE

A. Carlier, J-Y. Tourneret Neural networks 2024 24 / 35

Momentum

To avoid problems related to noisy gradients, we add an inertia term
(momentum)

Image from [Goodfellow et al. 2015] Deep Learning

A. Carlier, J-Y. Tourneret Neural networks 2024 25 / 35

Momentum

In practice, we adapt the gradient descent algorithm, replacing the update
of the parameters

β ← β − α ∂J
∂β

with 2 steps:

v = ηv − α ∂J
∂β

β ← β + v

where v (for velocity) denotes the direction in which the parameters will
be modified. v takes the previous gradients into account via the parameter
η (0 < η < 1), which quantifies the relative importance of the previous
gradients compared to the current gradient

A. Carlier, J-Y. Tourneret Neural networks 2024 26 / 35

Advanced optimizers to improve SGD

In high dimensional parameter spaces, the topology of the objective
function makes gradient descent sometimes inefficient. We can improve
the latter by using adapted optimizers.

The AdaGrad optimizer introduces a form of learning rate adaptation by
accumulating the squares of previous gradients.

1 Gradient computation: g = ∂J
∂β

2 Gradient norm accumulation: r = r + ||g ||2
3 Parameter update: β ← β − α√

r
g

A. Carlier, J-Y. Tourneret Neural networks 2024 27 / 35

Advanced optimizers to improve SGD

The RMSProp optimizer is almost identical to AdaGrad, but the impact
of the oldest gradients is altered by a multiplicative coefficient ρ less than
1 (weight decay), which improves the behavior of the algorithm in the case
of elongated bowls.

1 Gradient computation: g = ∂J
∂β

2 Gradient accumulation: r = ρr + (1− ρ)||g ||2
3 Parameter update: β ← β − α√

r
g

Finally, the Adam optimized is similaire to RMSProp but also adapts
momentum.

A. Carlier, J-Y. Tourneret Neural networks 2024 28 / 35

Choosing an optimizer in practice

Adam is often a good choice to start (with the ‘magic” learning rate):

In practice, the best results in the state-of-the-art are obtained with a
simple stochastic gradient descent, and a programmed update of the
learning rate (cyclic, cosine, etc.)

A. Carlier, J-Y. Tourneret Neural networks 2024 29 / 35

SGD vs. Adam on a simple example

SGD Adam

(Evolution of the loss during training, for different learning rates, with
SGD and Adam)

A. Carlier, J-Y. Tourneret Neural networks 2024 30 / 35

Outline

1 Neural networks: multi-layer perceptron

2 Activation functions

3 Optimizers

4 Regularization

A. Carlier, J-Y. Tourneret Neural networks 2024 31 / 35

Early stopping

Early stopping is a regularization strategy which consists in observing the
validation error and stopping the learning when this error starts to rise.

In practice, validation error is noisy, we have to wait a little (patience
parameter) before stopping for good.

Image from [Goodfellow et al. 2015] Deep Learning

A. Carlier, J-Y. Tourneret Neural networks 2024 32 / 35

Weight decay

Add a constraint on the network parameters:

L2 or Ridge regularization keeps the model coefficients as small as
possible:

J(θ) = EmpiricalRisk(θ) + λ
1

2

m∑
i=1

θ2i

where λ controls the desired regularization quality

L1 or Lasso regularization: tends to completely eliminate the weights
of the least important variables (⇒ produces a sparse model):

J(θ) = EmpiricalRisk(θ) + λ

m∑
i=1

|θi |

[Krogh, Hertz 1992] A simple weight decay can improve generalization

A. Carlier, J-Y. Tourneret Neural networks 2024 33 / 35

Weight decay

Elastic net regularization: compromise of Ridge and Lasso handled
by an extra parameter r ∈ [0, 1] :

J(θ) = EmpiricalRisk(θ) + rλ
1

2

m∑
i=1

|θi |+
1− r

2
λ

m∑
i=1

θ2i

https://playground.tensorflow.org/

A. Carlier, J-Y. Tourneret Neural networks 2024 34 / 35

https://playground.tensorflow.org/

Data augmentation
Using small datasets can lead to overfitting.

Image de https://github.com/aleju/imgaug

A. Carlier, J-Y. Tourneret Neural networks 2024 35 / 35

https://github.com/aleju/imgaug

	Neural networks: multi-layer perceptron
	Activation functions
	Optimizers
	Regularization

