Logistic Regression Machine Learning

Axel Carlier, Jean-Yves Tourneret

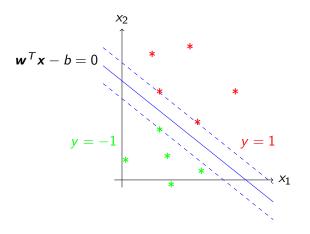
2024

Outline

Logistic regression

Single-layer perceptron

Reminder: Support Vector Machines

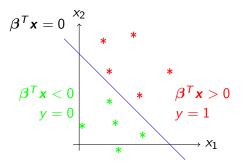


Find an optimal separating hyperplane, such that $|\boldsymbol{w}^T\boldsymbol{x}_i - b| \geq 1$.

For linear regression, we again define a linear model:

$$z = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p = \boldsymbol{\beta}^T \boldsymbol{x}$$
, with $\boldsymbol{x} = [1, x_1, ..., x_p]^T$

This linear model acts as a **separator** for the 2 classes: $y \in \{0,1\}$



Back to the Bayesian classifier

Bayesian rule for two classes ω_1 and ω_2

$$d^*(\mathbf{x}) = \omega_1 \Leftrightarrow f(\mathbf{x}|\omega_1)P(\omega_1) \ge f(\mathbf{x}|\omega_2)P(\omega_2)$$

$$\Leftrightarrow \frac{f(\mathbf{x}|\omega_1)P(\omega_1)}{f(\mathbf{x}|\omega_2)P(\omega_2)} \ge 1$$

$$\Leftrightarrow \frac{\exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \mathbf{\Sigma}_1^{-1}(\mathbf{x} - \mathbf{m}_1)\right] P(\omega_1)}{\exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{m}_2)^T \mathbf{\Sigma}_2^{-1}(\mathbf{x} - \mathbf{m}_2)\right] P(\omega_2)} \ge 0$$

In the Gaussian case with $\Sigma_1=\Sigma_2=\Sigma$, one obtains

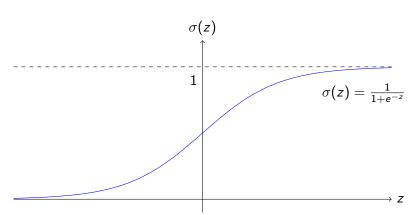
$$d^*(\mathbf{x}) = \omega_1 \Leftrightarrow \sigma(\boldsymbol{\beta}^T \mathbf{x}) = \frac{1}{1 + e^{-\boldsymbol{\beta}^T \mathbf{x}}} \leq 0.5$$

with

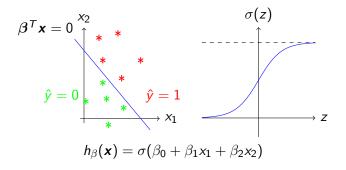
$$\boldsymbol{\beta}^{T}\boldsymbol{x} = \frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{m}_{1} - \boldsymbol{m}_{2}\right) + \frac{1}{2}\boldsymbol{m}_{1}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{m}_{1} - \frac{1}{2}\boldsymbol{m}_{2}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{m}_{2} + \ln\left[\frac{P(\omega_{1})}{P(\omega_{2})}\right].$$

The **sigmoid** or **logistic** function is defined as:

$$\sigma(z) = \frac{1}{1 + exp(-z)}$$



2D case where data is linearly separable:



- We predict $\hat{y} = 1$ if $\beta_0 + \beta_1 x_1 + \beta_2 x_2 > 0 \Leftrightarrow \sigma(\beta^T x) > 0.5$
- We predict $\hat{y} = 0$ if $\beta_0 + \beta_1 x_1 + \beta_2 x_2 \le 0 \Leftrightarrow \sigma(\boldsymbol{\beta}^T \boldsymbol{x}) \le 0.5$

How to estimate β in this framework?

Let $\mathcal{D} = \{x^{(1)}, ..., x^{(n)}\}$ be our **training set**, with n examples:

$$m{x}^{(i)} = egin{bmatrix} x_1^{(i)} \ dots \ x_p^{(i)} \end{bmatrix} \in \mathbb{R}^p ext{ and } y^{(i)} \in \{0,1\}, orall i \in \{1,..,n\} \end{bmatrix}$$

and the **model** is defined by the sigmoid function:

$$P(y = 1 | \mathbf{x}; \boldsymbol{\beta}) = \sigma(\boldsymbol{\beta}^T \mathbf{x}) = \frac{1}{1 + e^{-\boldsymbol{\beta}^T \mathbf{x}}}$$

One can define the following classification rule

- Predict $\hat{y} = 1$ if $\sigma(\beta^T x) > 0.5$
- Predict $\hat{y} = 0$ if $\sigma(\beta^T x) \leq 0.5$

We define an **objective function** that we want to minimize:

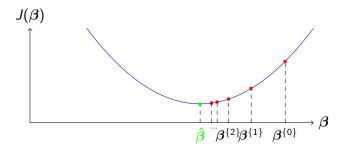
$$J(\beta) = \frac{1}{n} \sum_{i=1}^{n} loss \left(h_{\beta}(\mathbf{x}^{(i)}), y^{(i)} \right)$$

The loss function should be small when $h_{\beta}(\mathbf{x}^{(i)})$ is close to $y^{(i)}$ and large otherwise.

We want to estimate:

$$oldsymbol{eta}^* = rg\min_{oldsymbol{eta}} J(oldsymbol{eta})$$

Gradient Descent



Algorithm: Gradient descent (\mathcal{D}, α) Initialize $\beta^{\{0\}} \leftarrow 0$, $k \leftarrow 0$

WHILE no convergence DO

FOR j from 1 to p **DO**

$$\boldsymbol{\beta}_{j}^{\{k+1\}} \leftarrow \boldsymbol{\beta}_{j}^{\{k\}} - \alpha \frac{\partial J(\boldsymbol{\beta}^{\{k\}})}{\partial \boldsymbol{\beta}_{j}}$$

END FOR

$$k \leftarrow k + 1$$

END WHILE

Back to our problem:

$$\boldsymbol{\beta}^* = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^n loss\left(h_{\boldsymbol{\beta}}(\boldsymbol{x}^{(i)}), y^{(i)}\right)$$

One could use for example the squared error:

$$loss\left(h_{\beta}(\mathbf{x}^{(i)}), \mathbf{y}^{(i)}\right) = \frac{1}{2}\left(h_{\beta}\left(\mathbf{x}^{(i)}\right) - \mathbf{y}^{(i)}\right)^{2} = \frac{1}{2}\left(\frac{1}{1 + e^{-\beta^{T}\mathbf{x}^{(i)}}} - \mathbf{y}^{(i)}\right)^{2}$$

Unfortunately, this function is **not convex** which means the minimum that can be found with gradient descent is not necessary global!

Another idea: maximum likelihood estimation

Assuming that

$$P(Y_i = 1 | \mathbf{x}_i; \boldsymbol{\beta}) = \sigma(\boldsymbol{\beta}^T \mathbf{x}_i) = \frac{1}{1 + e^{-\boldsymbol{\beta}^T \mathbf{x}_i}} = h_{\boldsymbol{\beta}}(\mathbf{x}_i)$$

and

$$P(Y_i = 0 | x_i; \beta) = 1 - P(Y_i = 1 | x_i; \beta) = 1 - h_{\beta}(x_i),$$

the **likelihood** of the vector $y_1, ..., y_n$ can be written

$$L(y_1,...,y_n;\beta) = \prod_{i=1}^n P(Y_i = y_i | \mathbf{x}_i; \beta) = \prod_{i=1}^n [h_{\beta}(\mathbf{x}_i)]^{y_i} [1 - h_{\beta}(\mathbf{x}_i)]^{1-y_i}.$$

Thus the **negative log-likelihood** is

$$-\ln \left[L(y_1,...,y_n;\beta)\right] = \sum_{i=1}^n -y_i \ln \left[h_{\beta}(\mathbf{x}_i)\right] - (1-y_i) \ln \left[1-h_{\beta}(\mathbf{x}_i)\right],$$

We would like to maximize the likelihood of observing the training samples, i.e. minimize the negative log-likelihood.

We introduce the **logistic loss function (or binary cross entropy)** defined as:

$$loss[h_{\beta}(\mathbf{x}), y] = \begin{cases} -\ln[h_{\beta}(\mathbf{x})] & \text{if } y = 1 \\ -\ln[1 - h_{\beta}(\mathbf{x})] & \text{if } y = 0 \end{cases}$$

$$= -y \ln[h_{\beta}(\mathbf{x})] - (1 - y) \ln[1 - h_{\beta}(\mathbf{x})]$$

This loss function is small when y=1 and $h_{\beta}(\mathbf{x})$ is large and when y=0 and $h_{\beta}(\mathbf{x})$ is small, i.e., when there are few classification errors!

0.2 0.4

 $h_{\beta}(x)$

0.8

0ò

0.2 0.4 0.6 0.8

 $h_B(x)$

The objective function $J(\beta)$ can be written:

$$J(\beta) = \frac{1}{n} \sum_{i=1}^{n} -y^{(i)} \ln(h_{\beta}(\mathbf{x}^{(i)})) - (1-y^{(i)}) \ln(1-h_{\beta}(\mathbf{x}^{(i)})).$$

This function is **CONVEX**!

 \rightarrow We can use gradient descent to find its minimum.

Gradient descent requires partial derivatives to be computed:

$$\frac{\partial J}{\partial \beta_{j}} = \frac{\partial}{\partial \beta_{j}} \frac{1}{n} \sum_{i=1}^{n} \left\{ -y^{(i)} \ln(h_{\beta}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \ln(1 - h_{\beta}(\mathbf{x}^{(i)})) \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ -y^{(i)} \frac{\partial}{\partial \beta_{j}} \ln(h_{\beta}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \frac{\partial}{\partial \beta_{j}} \ln(1 - h_{\beta}(\mathbf{x}^{(i)})) \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[h_{\beta}(\mathbf{x}^{(i)}) - y^{(i)} \right] \mathbf{x}_{j}^{(i)} \qquad \text{(all computations made)}$$
(1)

Comments on the previous slide

In order to compute $\frac{\partial}{\partial \beta_j} \ln(h_{\beta}(\mathbf{x}))$, we define $z = \boldsymbol{\beta}^T \mathbf{x}$, $u = \sigma(z)$ and $v = \ln(u)$

$$\frac{\partial}{\partial \beta_{j}} \ln[h_{\beta}(\mathbf{x})] = \frac{\partial}{\partial \beta_{j}} \ln(\sigma(\beta^{T} \mathbf{x}))$$

$$= \frac{\partial v}{\partial u} \frac{\partial u}{\partial z} \frac{\partial z}{\partial \beta_{j}} \qquad \text{chain-rule}$$

$$= \frac{1}{\sigma(z)} \sigma(z) (1 - \sigma(z)) x_{j} \quad \text{since } \sigma'(z) = \sigma(z) [1 - \sigma(z)]$$

$$= (1 - h_{\beta}(\mathbf{x})) x_{j}$$

Similarly, we prove $rac{\partial}{\partial eta_j} \ln(1-h_{oldsymbol{eta}}(oldsymbol{x})) = -h_{oldsymbol{eta}}(oldsymbol{x}) x_j$

Logistic regression for multinomial classification

How to proceed with k > 2 classes ?

We define the **softmax** function:

$$P(y = i | \mathbf{x}, \boldsymbol{\beta}) = \frac{e^{\beta_i^t \mathbf{x}}}{\sum_{j=1}^k e^{\beta_j^T \mathbf{x}}}$$

For a sample from class j, we define a one-hot vector \mathbf{y} of dimension k such that

$$y_i = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ otherwise} \end{cases}$$
 (2)

Logistic regression for multinomial classification

For each sample $\mathbf{x}^{(i)}$, we can predict its probability to belong to each of the k classes.

$$h_{\beta}(\boldsymbol{x}^{(i)}) = \begin{bmatrix} p(y^{(i)} = 1 | \boldsymbol{x}^{(i)}; \beta) \\ p(y^{(i)} = 2 | \boldsymbol{x}^{(i)}; \beta) \\ \vdots \\ p(y^{(i)} = k | \boldsymbol{x}^{(i)}; \beta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\beta_{j}^{T} \boldsymbol{x}^{(i)}}} \begin{bmatrix} e^{\beta_{1}^{T} \boldsymbol{x}^{(i)}} \\ e^{\beta_{2}^{T} \boldsymbol{x}^{(i)}} \\ \vdots \\ e^{\beta_{k}^{T} \boldsymbol{x}^{(i)}} \end{bmatrix}$$

Logistic regression for multinomial classification

The objective function can be written as:

$$J(\beta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \mathbb{I}(y^{(i)} = j) \ln \left[\frac{e^{\beta_{j}^{T} \mathbf{x}^{(i)}}}{\sum_{l=1}^{k} e^{\beta_{l}^{T} \mathbf{x}^{(i)}}} \right].$$
 (3)

Its gradient is:

$$\nabla_{\beta_j}J(\boldsymbol{\beta}) = -\frac{1}{n}\sum_{i=1}^n \boldsymbol{x}^{(i)} \left[\mathbb{I}(y^{(i)} = j) - P(y^{(i)} = j | \boldsymbol{x}^{(i)}; \boldsymbol{\beta}) \right].$$

Outline

Logistic regression

Single-layer perceptron

Artificial Neuron

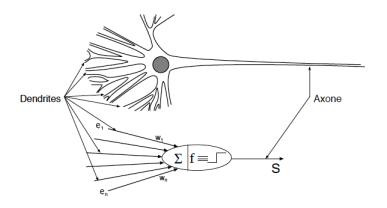
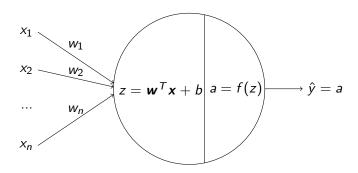


Figure: Structure of biological and artificial neurones

Artificial Neuron



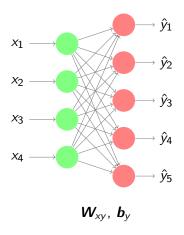
An artificial neuron is defined as a triplet of synaptic weights \boldsymbol{w} , bias b and activation function f.

The activation a of a neuron answering to an input x is:

$$a = f(\mathbf{w}^T \mathbf{x} + b)$$

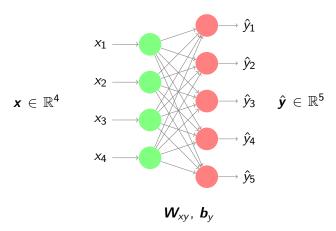
4□ > 4□ > 4□ > 4□ > 4□ > 4□

Neural network: Single-layer perceptron



A single-layer perceptron is in fact a little bit more general and can be composed of several neurons assembled in a single layer (p = 4 is the data dimension, and K = 5 is the number of classes).

Neural network: Single-layer perceptron



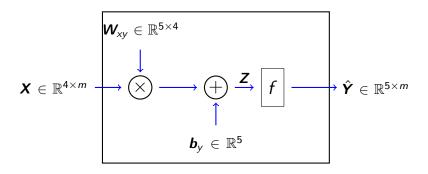
The perceptron computation is implemented as a matrix product:

$$\hat{\boldsymbol{y}} = f(\boldsymbol{W}_{\!\scriptscriptstyle X\!Y}\boldsymbol{x} + \boldsymbol{b_y})$$

where f is an activation function

4014014111111111111

Neural network: Single-layer perceptron

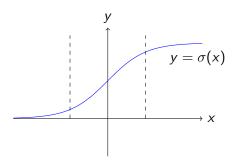


Another representation of the single-layer perceptron for prediction and classification.

Single-layer perceptron

Activation functions, denoted as f, can often be decomposed in three subdomains, as for sigmoid functions below.

- a non-activated part, below a certain threshold;
- a transition part, in the threshold neighbourhood;
- an activated part, above the threshold.



Single-layer perceptron

Algorithm 1 Single-layer perceptron training

- Initialization of weights $W_{xy}^{\{0\}}$ and biases $\boldsymbol{b}_{y}^{\{0\}}$.
- ② Presentation of a set of inputs $\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}$ and corresponding outputs $\mathbf{y}^{(1)},...,\mathbf{y}^{(n)}$
- Model prediction and objective function computation:

$$\hat{\mathbf{y}}^{(i)\{k\}} = f(\mathbf{W}_{xy}^{\{k\}} \mathbf{x}^{(i)} + \mathbf{b}_{y}^{\{k\}}) \text{ et } J = \sum_{i=1}^{n} loss(\hat{\mathbf{y}}^{(i)\{k\}}, \mathbf{y}^{(i)})$$

Parameter updates

$$\mathbf{W}_{xy}^{\{k+1\}} = \mathbf{W}_{xy}^{\{k\}} - \alpha \frac{\partial J}{\partial \mathbf{W}_{xy}}$$
, and $\mathbf{b}_{y}^{\{k+1\}} = \mathbf{b}_{y}^{\{k\}} - \alpha \frac{\partial J}{\partial \mathbf{b}_{y}}$

where α is the learning rate $(0 \le \alpha \le 1)$.

3 Loop to 2 until convergence (i.e., $\hat{\mathbf{y}}^{(i)\{k\}} \approx \mathbf{y}^{(i)}$).

Visualization

https://playground.tensorflow.org/

