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Local Outlier Factor (LOF) [Breunig, 2000]

» General principle of k-NN methods: anomalies are far from nominal data
and in areas where there are few nominal data

» LOF is based on a “local density” in the neighborhood of each point (with
a specific distance referred to as “local reachability distance”)

wlx:) = (Wk(lwz)l Z dk(wi7$j)> , Ni(x;): k-NN of x;

z; ENy ()
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Local Qutlier Factor

» If the local density of a test point is close to the density of its neighbors,
this point is declared as “normal”.
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Local Outlier Factor

» Definition L
Wi (@] 2w, e (i) H(Z5)
(@)
If &; is in a homogeneous area (normal point) LOF(x;) ~ 1, else
LOFk(x;) >> 1 (density of the neighbors of @; larger than density of x;).

» Reachability distance between p and o
In order to reduce the fluctuation of d(p, o) when p is close to o, one can
use the reachability distance

rdi (p, 0) = max{dx(p, 0), d(p,0)}

> If pis far from o, then rdi(p,0) = d(p, o)
> If pis close to o, rdi(p,0) is the distance between p and the kth nearest
neighbor of o
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Example from [Breunig, 2000]

LOF values for £ = 30 and n = 1700

One low density Gaussian cluster of 200 objects and three large clusters of 500
objects each.

outlier factor OF
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LOF for Maritime Surveillance (k = 9, Contamination = 10/260)

LOF
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0.0
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Inverse LOF for Maritime Surveillance (k = 9, Contamination = 10/260)
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Local Outlier Probabilities (LoOP) [Kriegel, 2009]

» LoOP reformulates LOF in a probabilistic context by normalizing
LOF(x;) and deriving an anomaly score €]0, 1] for each vector x;:

LoOP(x;) : probability that «; is an anomaly

» Parameters of LoOP

> Number of nearest neighbors k: to be determined by cross validation.
> One significance parameter \ ensuring that a point o is an outlier for S if

P[0 < d(o,s) < Ao(0,5)] < ¢,Vs € S.

where (0, S) is a kind of average distance between o and the elements of S:

ses d*(09)

o(0,5) = 5] .

d(o,s

As examples, assuming that 7(0,5) is distributed according to a half A(0, 1)

distribution, we obtain A = 3 if = 99.7% and \ = 2 if ¢ = 95%.

13/ 71



Cours 1SN

Examples of LoOPs (k =20, A = 3)
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Discords [Keogh, 2005]

> Non-Self Match: M is a non-self match of C at distance of dist(M, C) if
M of length n begins at p, C of length n begins at g and |[p — ¢q| > n.

abcabcabcabecXXXabcabcabacabec

» Time Series Discord : Given a time series T, the subsequence D of length
n beginning at position p is called the discord of T, if D has the largest
distance to its nearest non-self match.

» kth Time Series Discord : Given a time series T', the subsequence D of
length n beginning at position p is called the kth-discord of T" if D has the
kth largest distance to its nearest non-self match.
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One discord

%0
20
20
200

Ewo
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Window Size 19

0 200 a00 600 80 1000

Discord for the hourly power electrical demand in an Italian city dur-
ing 42 days (1008 hours) - n = 19 hours (anomaly size), k = 1
(https://matrixprofile.org/posts/what-are-time-series-discords/).
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Two discords

Window Size 48
* Discord

Matrix Profile
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— 1st Discord
—— 2nd Discord
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Discord for the hourly power electrical demand in an lItalian city during 42
days (1008 hours) - n = 48 hours (anomalies that last 2 days), k = 2
(https://matrixprofile.org/posts/what-are-time-series-discords/).
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Linear One-Class-SVM method
> Find the hyperplane separating the training data X = {1, ..., , } from
the origin and located as far as possible from the origin
» Distance between a point = (x,y)” and a straight line D of equation
ar+ Py —p=0

— T —
do.p) ozt By =) _ [we—p)

Vo2 + B2 [[wll

Hyperplan séparateur a plus grande marge 00 données d'apprentissage
— frontiere
000 données de test
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Linear One-Class-SVM method

» By noting that the margin is d(0,D) = ”w”
optimization problem (“Soft-margin” SVM classifier)

we can solve the following

RV B S
minimize §||w|\ +CZ§,-

=1

with the constraints w x; > 1 — &, & >0,V

or the v—SVM formulation

Minimize — + = E P —
inimize = ||w|| 2 15

with the constraints w” a; > p— &, & > 0,Vi,p >0

ensuring that the percentage of vectors violating the constraint
wTx; — p > 0 is upper-bounded by v and that the fraction of support

vectors is lower bounded by v.
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Optimization

Kihn and Tucker multipliers

For a convex optimization problem (convex function f(x) to optimize and
convex constraints G; () < 0), an optimality condition is the existence of
parameters «; > 0 such that the Lagrangian derivative is zero, i.e.,

L'(x) = f (x) + Z @Gl (x) =0

with a; = 0 if G; (x) < 0 (i.e., a:G; (x) = 0).
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Optimization

Lagrangian

n
L("Evgaavﬁa ) 7w w+7251 Zaz (wTwz_p+€z>_Zﬁi€i
i=1 i=1
Set to zero the partial derivatives of L with respect to the primal variables w,
£ and p to zero yields

n n
1 1
w = Zaimi,Zai =1 and a; = o -8 < E’W
=1 =1

Remark on support vectors
> Since i = - — B;, when 3; = 0, one has o; = -1 and x; is a support
vector
» When ; > 0, one has & = 0. If a; > 0, one has wx; — p =0, and x; is
also a support vector
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Dual problem

Solve L'(xz) =0
w = Z vz =z« (1)

Support vectors
. T T
with a = (a1, ...,an)", © = (21, ...,2n)" and

«; = 0 if the constraint is a strict inequality
a; > 0 if the constraint is an equality

After replacing the expression of w in the Lagrangian, we obtain
U(a) = —%aT (mmT) a

that has to be maximized in the domain defined by > 7" , o; =1 and
0 S (673 < L

— nv’
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Remarks

Simple optimization problem
» Quadratic (hence convex) function to optimize and linear constraints

» Expression of p: the constraints are equalities when a; > 0 and 3; > 0:
n
T T
p=wW T; = Zaj:cj ;.
j=1
» Classification rule for a vector =

f(x) = sign Z aixzle—p

x; support vectors

where the summation is reduced to the support vectors.

» v is a lower bound for the fraction of support vectors and an upper bound
for the number of vectors lying outside the separating hyperplane

» Generalization to nonlinear separating curves using kernels straightforward
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Non-linear SVM methods: example 1
» Two classes centered around {(1,1)",(=1,—1)"} and

{(la _I)T’ (_la 1)T}'

» Training vectors are transformed using the application ¢
¢ R* — R?
T T
x; = (Tin, Ti2) > d(xi) = (i1, Ti2, Ti1%4,2)

» A linear separator w = (0,0,1) " in the transformed space can separate
the data from the two classes

AX=Z

55 20 s o 05 00 05 10 15 20
Y

(c) Original data x; (Class #1: or- (d) Transformed data ¢(-)
ange, Classe #2: green).
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Non-linear SVM methods: example 2

» Two classes defined by two different rings
» Polynomial transformation ¢

b R* — R?

x; = (i, xi,2)T — o(mi) = (9551 s 5012,2 ) ﬁlel’z z)T

> A linear separator w = (1,1,0) " in the transformed space corresponds to
a “circular” separation in the original space.

000 données d'apprentissage 1
1.5/{e0e données d'apprentissage 0

données d'appres
— frontidre

frontiére
10 - T Ry, 5

(f) Polynémlal kernel ™’
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Non-linear one-class SVM methods
» For two data points «; and x;, we have
2
H(wiawj) = <miawj> .

The one-class SVM only needs scalar products between the vectors x; to
be computed!

» Transposition in the ¢ domain by replacing the scalar product by a kernel

(i) —  K(®i,x;) = (P(xi), d(x;))

Thus, the transformed vectors ¢(x;) and ¢(x;) do not need to be
computed.

» Gaussian kernel

202

i — $j||2> .

o=

For this example, one can show that the space spanned by ¢(x) has
infinite dimension.
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Non-linear one-class SVM methods

000 données d'apprentissage
= frontiere
e données de test
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Parameters for the one-class SVM method

Decision rule

f(z) = signe (Z a;k(xi, ) — p)

For the Gaussian kernel

k(i ;) = exp (—v||lzi — z;]%) . (2)

Effect of the different parameters
» ~ is related with the regularity of the separating curve

» v allows the the percentage of outliers from the nominal class (located
outside the separating curve) to be adjusted
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Hyperparameter estimation

Hyperparameter v

» Expert or cross validation

Hyperparameter ~
> Inverse of the number of descriptors (very adhoc)
» Cross validation

> “Trick (Jaakkola, Aggarwal, ...)": v = ﬁ with o the median of the
distances between nominal data

» More sophisticated methods are available in the literature
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Effect of parameter v (v = 0.18)
v =0.01

T
— frontiere

eee fenetres testees
ooo fenetres d' apprentissage
eee fenetres anomalies

2t

4L

6| |

-8 -6 -4 -2 0 2 4
gamma: 0.182886 ;nu: 0.010000 ;skilearn
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Effect of parameter v (v = 0.18)

v =0.05
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Effect of parameter v (v = 0.18)
v =20.1

T T T T T
— frontiere

eee fenetres testees

coo fenetres d' apprentissage
eee fenetres anomalies

-2

-8

-8 -6 -4 -2 0 2 4
gamma: 0.182886 ;nu: 0.100000 ;skilearn
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Effect of parameter v (v = 0.01)

v =0.01

T T T T T T T
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Effect of parameter v (v = 0.01)
v=0.1

T T T T
4t — frontiere
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ooo fenetres d' apprentissage
eee fenetres anomalies

—41 4

6L ]
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gamma: 0.100000 ;nu: 0.010000 ;skilearn
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Effect of parameter v (v = 0.01)
~v = 0.18 (Jaakkola)

T
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ee fenetres testees
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Effect of parameter v (v = 0.01)
v=0.5

41 — frontiere g
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Effect of parameter v (v = 0.01)

— frontiere
eee fenetres testees

eoo fenetres d' apprentissage
e fenetres anomalies
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Detection of Abnormal Trajectories for Maritime Surveillance

LOF

2.0-

0.5+

0.0-

0.0
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One-Class SVM versus SVM

» Left figure: one-class SVM with v = 0.1
> Right figure: supervised SVM with Gaussian kernel (y =1 and C' = 1)

One-Class SVM - Ensemble d'apprentissage
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SVM a marge souple et noyau gaussien - Ensemble d'apprentissage
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Application to the analysis of telemetry

Thesis of B. Pilastre (Nov. 2020)

Senil haut
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A e

EEERE

v

Thousands of telemetry signals
» Discrete and continuous data

» Univariate and multivariate anomalies

v

The out of limit (OOL) rule is simple but not efficient!
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Application to the analysis of telemetry

Receiver operational characteristics

o

Detections

o
~

0.2 —ADDICT, Tyqr = 5
---NOSTRADAMUS

0 0.1 0.2 0.3 0.4 0.5 0.6

Fausscs Alarmes

Method Threshold Pp Ppa
OC-SVM 0.0018 80.85% 7%
MPPCAD 79.6 80% 13%

NOSTRADAMUS 29 77.26% 6%
ADDICT (Tmax = 5) 4.2 80% 3%
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Detected anomalies

Scare d'anomalie

Index
(b) MPPCAD

0 7 [FA5 | & 7
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Score d'anomalie

Score d'anomalie
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w003,

0025

0070/

001

Index
(d) ADDICT (r = 5)
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Generalization to a semi-supervised scenario

Introduction of a user feedback

» Semi-supervised context: unlabelled data X = {@1, ..., @, }, labelled
normal data Y = {y1, ..., yn} and labelled anomalies Z = {z1, ..., z,}
(e.g., resulting from user feedback)

» One-class SVM with user feedback

1 S
argmin,, ¢ 5 [w]3 +Cr Y &

=1

s.t. 'wT<I>(:I:i) >1—-¢& and & >0 unlabeled data
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Generalization to a semi-supervised scenario

Introduction of a user feedback

» Semi-supervised context: unlabelled data X = {@1, ..., @, }, labelled
normal data Y = {y1, ..., yn} and labelled anomalies Z = {z1, ..., z,}
(e.g., resulting from user feedback)

» One-class SVM with user feedback
1 ni ng n3
argminwei w3 + Ci Z& +Cs Z G+Cs ZTP
i=1 1=1 p=1

s.t. wT<I>(:1:i) >1—¢& and & >0 unlabeled data
wT<I>(yl) >1—¢ and ¢ >0 labeled normal

w ' ®(zp) <147, and 7, > 0 labeled anomalies
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Examples

e unlabelled
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Examples

e unlabelled
normal
anomaly
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Support Vector Data Description (Tax and Duin, 1999)

Find a sphere of center ¢ and radius R that encloses most of the data objects.

Optimization problem

minimize R? + CZ&
=1

with the constraints (x; — c)T(a:i —c) < R?+ £ & >0,V
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Optimization
Lagrangian
L(R,¢,&,0,8) = F*+CY &=y ai [R+ &~ (@ — o) (@~ )| =Y Bt
i=1 i=1 i=1

Set to zero the partial derivatives of L with respect to the primal variables ¢, R
and £ yields

c:iaiwi,iai =1 and o = C—ﬁl S C,V’L
=1 =1

Dual problem
After replacing the expression of ¢ in the Lagrangian, we obtain

n n n
T T
U(a) = E QT Ty — E E Qi T; T
i=1 i=1 j=1

that has to be maximized in the domain defined by > " , o; =1 and
0<a; <C.
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Summary

Anomaly detection

» Classes of anomalies

» Algorithms
> Distance-based algorithms
> LoOF and LOOP
»> Discords
> Domain-based algorithms
» One-Class SVM
Isolation Forest
Reconstruction-based algorithms
Online anomaly detection

vYyy
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Principle of isolation forests [Liu, 2008]

> |solate each point by a random partitioning: an anomaly will be isolated

faster than a nominal point
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(b) Isolating x,

(a) Isolating x;
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How to built random trees?

Initial strategy proposed in the paper by Liu
For X = {x1,...,@,} with ; € R, a sample of 1 instances X' C X (v :

subsample size) is used to build an isolation tree.
For each vector x; € X’
» Select one feature randomly Fj,

» Compute the minimum and maximum of this feature denoted as max;
and ming

> Divide the space into two parts corresponding to F}, < si and F}, > sy,
where s is uniformly distributed in ] ming, maxg|

» Repeat the process until ; has been isolated
Average the numbers of steps obtained with different trees
E[h(z:)]

Note that it is NOT an expectation!!
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Length of an average path

v
7
£ 24
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1 5 10 50 100 500 1000

no. of tree (log scale)

(c) Average path lengths converge
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Anomaly score

» Definition E[h(z;)]

g(gci71/)) =2 <@

where Elh(x LIS the average path length for x; and c(%) is the average
length of a path for a tree with 1 instances (c(1) available in [Liu, 2008])
> if E[h(x;)] = c(¢) then s(x;, ) = 0.5 (uncertainty)
> if E[h(x;)] tends to 0, then s(x;,v) tends to 1 (x; is an anomaly)
> if E[h(x;)] tends to ¢ — 1, then s(x;,1) tends to 0 (x; is normal)

» Separating curve: defined using the averaged lengths of the paths

.08s

Orange samples: s(x;i, 1) < 0.5, blue samples: s(xz;, 1) > 0.5.
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Problem with isolation forest

Data features in 2D

-5

-10

15

10

-5

-10

Zy
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Extended Isolation Forest

Illustration of one step in EIF

12 : : : -
o Data
Sampling area
10+ - Sampled intercept H
—Sampled unit normal vector
— Splitting hyperplane
8t g
§ 6r i
4t J
2t J
0 ; )
0 8 10 12
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Generalized Isolation Forest

Tllustration of one step in proposed EIF

T

S Data'
—Sampled unit normal vector
10+ — Sampling area H
« Sampled intercept
— Splitting hyperplane
8 [ 4
g 6 1
4 L 4
2 L 4
0 1 1
0 8 10 12
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[llustration on Synthetic Satasets

075

30
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Computation times in seconds

Dataset EIF GIF
Pen Local 2.081 + 0.0998 1.11 £ 0.0731
Forest Cover 1.66 4+ 0.0692 | 0.981 + 0.0624
Speech 10.376 £ 0.839 4.729 + 0.472
Shuttle 1.2 + 0.0615 0.856 + 0.0381
Mammography | 1.113 + 0.0805 | 0.776 + 0.0578
Breast Cancer | 1.349 £ 0.0514 | 0.857 & 0.0454
Aloi 0.916 + 0.0548 | 0.699 + 0.0505
ANN Thyroid 1.103 + 0.0525 | 0.778 + 0.0463
Letter 2.027 4+ 0.1005 | 1.112 4+ 0.0657
Cardio 1.378 + 0.0639 | 0.912 + 0.0605
Pen Global 2.039 £ 0.0983 | 1.079 + 0.0654
Satellite 1.963 + 0.0811 | 1.145 4 0.058

lonosphere

2.009 £+ 0.074

0.875 £ 0.0581
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Summary

Anomaly detection

» Classes of anomalies

» Algorithms
> Distance-based algorithms

» LoOF and LOOP
»> Discords

> Domain-based algorithms
» One-Class SVM

Isolation Forest
Reconstruction-based algorithms

» Subspace-based methods
» Neural network-based approaches

> Online anomaly detection

vy
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Outlier detection using PCA [Shyu, 2003]

» Robust estimation of the mean and correlation matrix of normal data

> Conventional estimators of the mean and correlation matrix: & and 2
> Remove the vectors with the yth largest values of

d% = (.’El — Q_Z)Tz_l(ici — i)

These vectors are more likely to be anomalies!
> Recompute the mean and the correlation matrix X of the remaining vectors.

» Principal component analysis (PCA) of the vectors x;
» Compute two test statistics from the projected vector y; = Px;
a .2 P 2
Yij Yij
T, =N o = Yij
2,9 Z )\] P ) Z >\]
j=1 Jj=p—r+1

where A1, ..., Ay are the ¢ largest singular values of X (g such that 50% of
the inertia is preserved), and Ap_,41, ..., \p are the r smallest values of X.

Note that Tj 4 estimates the distance between x; and the mean vector

whereas U; ;, identifies vectors that have correlation structures different
from the normal data.

» Declare that @; is an anomaly if 75,4 > ¢1 or if Us g > c2

60/ 71



e
Cours 1SN

Summary

Anomaly detection

» Classes of anomalies
> Algorithms
> Distance-based algorithms
» LoOF and LOOP
> Domain-based algorithms
» One-Class SVM

Isolation Forest
Reconstruction-based algorithms

» Subspace-based methods
» Neural network-based approaches

> Online anomaly detection

vy
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Outlier detection using RNNs [Hawkins, 2002]

» Architecture of replicator neural networks

Target

> tanh activation functions for layers 2 and 4
> staircase activation function for layer 3
> linear or sigmoidal activation function for the output layer
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How to

use RNNs for outlier detection?

Weights
The weights of the hidden layers are optimized to minimize the
reconstruction error across all training patterns.

% DY (@i —oi)?

i=1 j=1

where m is the number of vectors in the database, n is the number of
features of @;, x;; and o;; are the jth features of the ith data record x; at
the input and output of the network.

Outlier factor for the ith data record

n

1
OFi = E Z(w” — Oij)Q.

j=1

The anomalies are the samples that are not well reconstructed by the
network!

63/ 71



e
Cours 1SN

Summary

Anomaly detection

» Classes of anomalies
> Algorithms
> Distance-based algorithms
» LoOF and LOOP
> Domain-based algorithms
» One-Class SVM

> Isolation Forest

> Reconstruction-based algorithms
» Neural network-based approaches
> Subspace-based methods

> Online anomaly detection
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Online anomaly detection

» One-class SVM
Exploit the structure of the one-class SVM problem to find a subspace
minimizer for an (n + 1)-point SVM problem by using the solution of the
n~-point problem. This can be done using active-set quadratic programming
(Gao, 2015) or incremental/decremental learning (Diehl, 2003)

» Online decision trees

> Random Forest (Saffari, 2009): Duplicate a new observation (number of
replications distributed according to a Poisson P (1) distribution) and
classify these observations using the existing tree. A node is divided into
two branches if 1) there is a minimum number of observations in this node,
2) the Gini index is sufficiently reduced after separation. A node is
suppressed when its out-of-bag error is too large.
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Online anomaly detection

» One-class SVM
» Online decision trees

> Random Forest (Saffari, 2009)

> Mondrian Forests (Lakshminarayanan, 2014): Divide the observation space
into hypercubes as a Mondrian painting and update this decision tree when
a new observation is arriving by continuing an existing split or by creating
new branches inside an existing split.
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References on anomaly detection

Surveys
» V. Chandola and A. Banerjee and V. Kumar, Anomaly detection: a survey, ACM
Computing Surveys, vol. 41, no. 3, pp. 1-62, 2009.

» M. A. F. Pimentel, D. A. Clifton and L. Tarassenko, A review of novelty detection, Signal
Processing, vol. 99, pp. 215-249, 2014.

LOF, LoOP and Discords

» M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, LOF: Identifying Density-Based
Local Outliers, Proc. Int. Conf. Management of Data (SIGMOD), Dallas, TX, USA,
2000.

» H. P. Kriegel, P. Kréger, E. Schubert, and A. Zime, LoOP: Local outlier probabilities,
Proc. Conf. Information Knowledge Management (CIKM), Hong-Kong, China, 2009.

» E. Keogh, J. Lin and A. Fu, HOT SAX: Finding the Most Unusual Time Series
Subsequence: Algorithms and Application, Proc. Int. Conf. Data Mining (ICDM),
Houston, Texas, Nov. 27-30, 2005.
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References on anomaly detection

One-Class SVM

» B. Schélkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, Estimating the
Support of a High-Dimensional Distribution, Neural Computation, vol. 13, no. 7, pp.
1443-1471, 2001.

» D. Tax and R. Duin, Support Vector Domain Description, Pattern Recognition Letters,
vol. 20, pp. 1191-1199, 1999.

Isolation Forests, extended and generalized isolation forests
» F. T. Liu, K. M. Ting and Z.-H. Zhou, Isolation Forest, Proc. IEEE Int. Conf. Data
Mining, Pisa, Italy, 2008.

» S. Hairi, M. C. Kind and R. J. Brunner, Extended Isolation Forest, IEEE Trans. Knowl.
Data Eng., vol. 33, no. 4, April 2021.

» J. Lesouple, C. Baudoin, M. Spigai and J.-Y. Tourneret, Generalized Isolation Forest for
Anomaly Detection, Pattern Recognition Letters, vol. 149, pp. 109-119, 2021.
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References on anomaly detection

Reconstruction algorithms

» M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn and L. Chang, A Novel Anomaly Detection
Scheme Based on Principal Component Classifier, Proc. Int. Conf on Data Mining,
Melbourne, Florida, USA, Nov. 19-22, 2003.

» S. Hawkins, H. He, G. Williams and R. Baxter, Outlier Detection Using Replicator Neural
Networks, Data Warehouse Knowledge Discovery, vol. 2454, pp. 170-180, 2002.

Online one-class SVM

» C. P. Diehl and G. Cauwenberghs, SVM Incremental Learning, Adaptation and
Optimization, Proc. Int. Joint Conf. Neural Networks (IJCNN), Portland, OR, USA,
July 20-24, 2003.

» K. Gao, Online One-class SVMs with Active-set Optimization for Data Streams, Proc.
Int. Conf. Machine Learning and Applications (ICMLA), Miami, FL, USA, Dec. 9-11,
2015
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References on anomaly detection

Online random forests

> A. Saffari et al., On-line Random Forests, Proc. Int. Conf. Computer Vision (ICCV),
Kyoto, Japan, Sep. 27-Oct. 04, 2009.

» B. Lakshminarayanan, D. M. Roy and Y. W. Teh, Mondrian Forests: Efficient Online

Random forests, Proc. Advances in Neural Information Processing Systems (NIPS),
Montreal, Canada, Dec. 8-13, 2014.

Thanks for your attention!
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Anomaly detection

Scikit learn examples

Robust covariance  One-Class SVM Isolation Forest  Local Outlier Factor

Lien: https://scikit-learn.org/0.21/auto_examples/plot_anomaly_comparison.html
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