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Summary

Anomaly detection
I Classes of anomalies
I Algorithms

I Distance-based algorithms
I LoOF and LOOP
I Discords

I Domain-based algorithms
I One-Class SVM

I Isolation Forests
I Reconstruction-based algorithms

I Subspace-based methods
I Neural network-based approaches

I Online anomaly detection
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Ponctual Anomalies
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Contextual Anomalies
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Collective Anomalies
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Local Outlier Factor (LOF) [Breunig, 2000]

I General principle of k-NN methods: anomalies are far from nominal data
and in areas where there are few nominal data

I LOF is based on a “local density” in the neighborhood of each point (with
a specific distance referred to as “local reachability distance”)

µ(xi) =

 1

|Nk(xi)|
∑

xj∈Nk(xi)

dk(xi,xj)

−1

, Nk(xi): k-NN of xi
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Local Outlier Factor

I If the local density of a test point is close to the density of its neighbors,
this point is declared as “normal”.
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Local Outlier Factor

I Definition

LOFk(xi) =

1
|Nk(xi)|

∑
xj∈Nk(xi)

µ(xj)

µ(xi)
.

If xi is in a homogeneous area (normal point) LOFk(xi) ≈ 1, else
LOFk(xi) >> 1 (density of the neighbors of xi larger than density of xi).

I Reachability distance between p and o
In order to reduce the fluctuation of d(p, o) when p is close to o, one can
use the reachability distance

rdk(p, o) = max{dk(p, o), d(p, o)}

I If p is far from o, then rdk(p, o) = d(p, o)
I If p is close to o, rdk(p, o) is the distance between p and the kth nearest

neighbor of o
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Example from [Breunig, 2000]

LOF values for k = 30 and n = 1700

One low density Gaussian cluster of 200 objects and three large clusters of 500
objects each.

10/ 71



Cours 1SN

LOF for Maritime Surveillance (k = 9, Contamination = 10/260)
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Inverse LOF for Maritime Surveillance (k = 9, Contamination = 10/260)

12/ 71



Cours 1SN

Local Outlier Probabilities (LoOP) [Kriegel, 2009]

I LoOP reformulates LOF in a probabilistic context by normalizing
LOFk(xi) and deriving an anomaly score ∈]0, 1[ for each vector xi:

LoOPk(xi) : probability that xi is an anomaly

I Parameters of LoOP
I Number of nearest neighbors k: to be determined by cross validation.
I One significance parameter λ ensuring that a point o is an outlier for S if

P [0 < d(o, s) < λσ(o, S)] < φ, ∀s ∈ S.

where σ(o, S) is a kind of average distance between o and the elements of S:

σ(o, S) =

√∑
s∈S d

2(o, s)

|S|
.

As examples, assuming that d(o,s
σ(o,s)

is distributed according to a half N (0, 1)

distribution, we obtain λ = 3 if φ = 99.7% and λ = 2 if φ = 95%.
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Examples of LoOPs (k = 20, λ = 3)
(a) LOF values.

(b) LoOP values.

Figure 1: Comparison of the interpretability of local,
density-based outlier scoring (here: LOF) values and
LoOP values on 2D synthetic data. Both algorithms
were run with k = 20, for LoOP � = 3.

based local outlier. In other words, while an outlier score
of x computed by any local approach like LOF will desig-
nate di↵erent degrees of outlierness for di↵erent regions of
the same data set and cannot be compared to a score of x
on a di↵erent data set, LoOP values are consistent over the
complete data set and over multiple data sets.

Figure 1 illustrates some di↵erences between LOF and
LoOP on a synthetic 2D data set. In the respective figures,
the interesting outlier scores are given. Additionally, LOF
values are converted to a circle radius with non-trivial scal-
ing, while LoOP values can be directly used as circle radius.
For example, object A (obviously an outlier) is not recog-
nized by LOF due to an unlucky choice of k = 20: the cluster
left of object A together with object A makes 21 objects, and
the 20-nearest-neighbor distance of any point in the cluster
will be the distance to A. Thus, the di↵erence in their k-
distance is small and A gets a low LOF score. LoOP assigns

an outlier probability of 59% to this object: due to the av-
eraging e↵ects, the pdist for cluster points just covers the
cluster itself, and object A gets a significantly higher pdist
value. The situation with object B is similar. Although
LOF values below 3 are usually considered “insignificant”,
even clear outliers such as the objects at C are just at ap-
proximately 2. LoOP assigns them an outlier probability of
about 85%. Object D highlights another weakness of LOF:
it is designed for clusters of uniform density. The cluster
around D shows a Gaussian distribution. LOF assigns ob-
ject D an outlier score higher than e.g. object B while this
point was in fact generated by the cluster it is adjacent to.
When modeling the data set using three Gaussian distri-
butions and uniform background noise, the probability of
object D being generated by the cluster is higher than that
of the noise distribution. The LoOP value of 16% is much
more useful here: there is a clear chance the the point is an
outlier, but it is also very likely it is just an outer point of
the clusters normal distribution.

3. EXPERIMENTS
We compare the accuracy of our novel LoOP model with

several competitive algorithms: We used the LOF [4] and
one of its latest variants LDOF [10] as representative algo-
rithms for local, density-based outlier models. We also used
the angle-based ABOD [6] as recent non-density-based pro-
posal. As a baseline, we used k-NN based outlier detection
as defined in [9] (distance to k-th nearest neighbor, or“kNN”
in short) and [2] (sum of the distances to the k nearest neigh-
bors, or “kNN weight” in short). Since we are not interested
in e�ciency but in the recall and precision of the methods,
we did not use the e�cient since approximate solutions for
“kNN” and “kNN weight” as proposed along with the model
in the corresponding papers but the exact implementations
of the corresponding outlier-models. All competitors have
been implemented in the unified framework ELKI [1]. We
chose � = 3 for LoOP throughout all experiments that are
reported here. However, results for di↵erent � values (� = 1
and � = 2) are identical because they give the same rank-
ing. This confirms our statement above, that LoOP is robust
against the choice of �.

We used three real-world data sets known from classifica-
tion and prepared them for unsupervised outlier detection by
sampling one of the classes to become sparse, and using this
class as outliers. The first data set is the “Wisconsin Breast
Cancer” diagnosis set [3], which consists of 357 “benign” and
212 “malignant” medical diagnosis records (31 dimensions).
We removed the malignant records except for the first 10
records, which we consider outliers. Thus, the data set con-
sists of 367 records. The second data set is called“Pen-Based
Recognition of Handwritten Digits” training set [3], which
consists of 7494 records, 719 to 780 for each of the classes
(which correspond to the digits 0 to 9). The dimensionality
is 16, each dimension resembling a pixel value in a 4x4 grid.
We chose the digit 4 to be our outlier class, and again only
kept the first 10 records of this digit, resulting in a data set
size of 6724 records. A third set consists of metabolic data
records [7] measuring the concentration of 43 metabolites in
the blood of newborns. The largest share in this data set is
a control group with 19,730 instances. We removed all atyp-
ical records except for “Phenylketonuria” entries. These 306
records were kept as outliers in the data set. The final data
set contains 20,036 records with 43 measurements each.

1651
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Discords [Keogh, 2005]

I Non-Self Match: M is a non-self match of C at distance of dist(M,C) if
M of length n begins at p, C of length n begins at q and |p− q| ≥ n.

I Time Series Discord : Given a time series T , the subsequence D of length
n beginning at position p is called the discord of T , if D has the largest
distance to its nearest non-self match.

I kth Time Series Discord : Given a time series T , the subsequence D of
length n beginning at position p is called the kth-discord of T if D has the
kth largest distance to its nearest non-self match.
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One discord

Discord for the hourly power electrical demand in an Italian city dur-
ing 42 days (1008 hours) - n = 19 hours (anomaly size), k = 1
(https://matrixprofile.org/posts/what-are-time-series-discords/).
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Two discords

Discord for the hourly power electrical demand in an Italian city during 42
days (1008 hours) - n = 48 hours (anomalies that last 2 days), k = 2
(https://matrixprofile.org/posts/what-are-time-series-discords/).
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Linear One-Class-SVM method
I Find the hyperplane separating the training data X = {x1, ...,xn} from

the origin and located as far as possible from the origin
I Distance between a point x = (x, y)T and a straight line D of equation
αx+ βy − ρ = 0

d(x,D) =
|αx+ βy − ρ|√

α2 + β2
=
|wTx− ρ|
‖w‖

Hyperplan séparateur à plus grande marge

marg
e

3 2 1 0 1 2 3
3

2

1

0

1

2

3
données d'apprentissage

frontière

données de test
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Linear One-Class-SVM method

I By noting that the margin is d(0,D) = ρ
‖w‖ , we can solve the following

optimization problem (“Soft-margin” SVM classifier)

minimize
1

2
‖w‖2 + C

n∑
i=1

ξi

with the constraints wTxi ≥ 1− ξi, ξi ≥ 0, ∀i

or the ν−SVM formulation

Minimize
1

2
‖w‖2 +

1

nν

n∑
i=1

ξi − ρ

with the constraints wTxi ≥ ρ− ξi, ξi ≥ 0, ∀i, ρ ≥ 0

ensuring that the percentage of vectors violating the constraint
wTxi − ρ ≥ 0 is upper-bounded by ν and that the fraction of support
vectors is lower bounded by ν.
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Optimization

Kühn and Tucker multipliers
For a convex optimization problem (convex function f(x) to optimize and
convex constraints Gi (x) ≤ 0), an optimality condition is the existence of
parameters αi ≥ 0 such that the Lagrangian derivative is zero, i.e.,

L′(x) = f ′ (x) +

n∑
i=1

αiG
′
i (x) = 0

with αi = 0 if Gi (x) < 0 (i.e., αiGi (x) = 0).
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Optimization

Lagrangian

L (w̃, ξ,α,β, ρ) =
1

2
wTw+

1

nν

n∑
i=1

ξi−ρ−
n∑
i=1

αi
(
wTxi − ρ+ ξi

)
−

n∑
i=1

βiξi

Set to zero the partial derivatives of L with respect to the primal variables w,
ξ and ρ to zero yields

w =
n∑
i=1

αixi,
n∑
i=1

αi = 1 and αi =
1

nν
− βi ≤

1

nν
,∀i

Remark on support vectors

I Since αi = 1
nν
− βi, when βi = 0, one has αi = 1

nν
and xi is a support

vector
I When βi > 0, one has ξi = 0. If αi > 0, one has wTxi − ρ = 0, and xi is

also a support vector
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Dual problem

Solve L′(x) = 0

w =
∑

Support vectors

αixi = xTα (1)

with α = (α1, ..., αn)T , x = (x1, ..., xn)T and{
αi = 0 if the constraint is a strict inequality
αi > 0 if the constraint is an equality

After replacing the expression of w in the Lagrangian, we obtain

U (α) = −1

2
αT
(
xxT

)
α

that has to be maximized in the domain defined by
∑n
i=1 αi = 1 and

0 ≤ αi ≤ 1
nν

.
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Remarks

Simple optimization problem
I Quadratic (hence convex) function to optimize and linear constraints
I Expression of ρ: the constraints are equalities when αi > 0 and βi > 0:

ρ = wTxi =

n∑
j=1

αjx
T
j xi.

I Classification rule for a vector x

f(x) = sign

( ∑
xi support vectors

αix
T
i x− ρ

)

where the summation is reduced to the support vectors.
I ν is a lower bound for the fraction of support vectors and an upper bound

for the number of vectors lying outside the separating hyperplane
I Generalization to nonlinear separating curves using kernels straightforward
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Non-linear SVM methods: example 1
I Two classes centered around {(1, 1)>, (−1,−1)>} and
{(1,−1)>, (−1, 1)>}.

I Training vectors are transformed using the application φ

φ : R2 −→ R3

xi = (xi,1 , xi,2)> 7−→ φ(xi) = (xi,1 , xi,2 , xi,1xi,2)>

I A linear separator w = (0, 0, 1)> in the transformed space can separate
the data from the two classes

(c) Original data xi (Class #1: or-
ange, Classe #2: green).

(d) Transformed data φ(·)
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Non-linear SVM methods: example 2
I Two classes defined by two different rings
I Polynomial transformation φ

φ : R2 −→ R3

xi = (xi,1 , xi,2)> 7−→ φ(xi) = (x2i,1 , x
2
i,2 ,
√

2xi,1xi,2)>

I A linear separator w = (1, 1, 0)> in the transformed space corresponds to
a “circular” separation in the original space.
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(e) Linear kernel
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(f) Polynomial kernel
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Non-linear one-class SVM methods

I For two data points xi and xj , we have

κ(xi,xj) = 〈xi,xj〉2.

The one-class SVM only needs scalar products between the vectors xi to
be computed!

I Transposition in the φ domain by replacing the scalar product by a kernel

〈xi,xj〉 −→ κ(xi,xj) = 〈φ(xi), φ(xj)〉

Thus, the transformed vectors φ(xi) and φ(xj) do not need to be
computed.

I Gaussian kernel

κ(xi,xj) = exp

(
−‖xi − xj‖

2

2σ2

)
.

For this example, one can show that the space spanned by φ(x) has
infinite dimension.
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Non-linear one-class SVM methods
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Parameters for the one-class SVM method

Decision rule

f(x) = signe

(
N∑
i=1

αiκ(xi,x)− ρ

)
For the Gaussian kernel

κ(xi,xj) = exp
(
−γ‖xi − xj‖2

)
. (2)

Effect of the different parameters
I γ is related with the regularity of the separating curve
I ν allows the the percentage of outliers from the nominal class (located

outside the separating curve) to be adjusted
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Hyperparameter estimation

Hyperparameter ν
I Expert or cross validation

Hyperparameter γ
I Inverse of the number of descriptors (very adhoc)
I Cross validation
I “Trick (Jaakkola, Aggarwal, ...)”: γ = 1

2σ2 with σ the median of the
distances between nominal data

I More sophisticated methods are available in the literature

31/ 71



Cours 1SN

Effect of parameter ν (γ = 0.18)

ν = 0.01
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Effect of parameter ν (γ = 0.18)

ν = 0.05
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Effect of parameter ν (γ = 0.18)

ν = 0.1
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Effect of parameter γ (ν = 0.01)

γ = 0.01
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Effect of parameter γ (ν = 0.01)

γ = 0.1

2
A
p
p
lic
a
tio
n
s

2
.1

S
V

M
 à

 u
n

e
 c

la
s

s
e

N
o

u
s allo

n
s essay

er d
e v

o
ir d

an
s cette p

artie les effets d
e la larg

eu
r d

e b
an

d
e g

am
m

a (
γ

) d
u

 n
o

y
au

 

R
B

F
 et ceu

x
 d

u
 p

aram
ètre n

u
(

ν
) q

u
i p

erm
et d

' ex
clu

re v
o

lo
n

tairem
en

t d
u

 p
érim

ètre  u
n

 certain
 

n
o

m
b

re d
e d

o
n

n
ées.

N
o

u
s co

m
p

arero
n

s d
eu

x
 alg

o
rith

m
es d

es S
V

M
 o

n
e-class d

o
n

t l' u
n

 est av
ec le «

sk
ilea
rn

»
 et l' au

tre av
ec 

l' o
p

tim
isatio

n
 «
cv
x
o
p
t»

▪
S

k
ile

a
rn

 

γ
0
.0
1

γ
=
0
.1

γ
=
0
.1
8

(J
a
a
k
k
o
la
)

γ
=
0
.5

γ
=
1

v=0.1v=0.05v=0.01

�
=

0.01
�

=
0.1

�
=

0.18

(J
aak

kola)
�

=
0.5

�
=

1

⌫ = 0.01 ⌫ = 0.05 ⌫ = 0.1

36/ 71



Cours 1SN

Effect of parameter γ (ν = 0.01)

γ = 0.18 (Jaakkola)
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Effect of parameter γ (ν = 0.01)

γ = 0.5
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Effect of parameter γ (ν = 0.01)

γ = 1
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Detection of Abnormal Trajectories for Maritime Surveillance
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One-Class SVM versus SVM

I Left figure: one-class SVM with ν = 0.1

I Right figure: supervised SVM with Gaussian kernel (γ = 1 and C = 1)
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Application to the analysis of telemetry

Thesis of B. Pilastre (Nov. 2020)

I Thousands of telemetry signals
I Discrete and continuous data
I Univariate and multivariate anomalies
I The out of limit (OOL) rule is simple but not efficient!
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Application to the analysis of telemetry

Receiver operational characteristics

Method Threshold PD PFA
OC-SVM 0.0018 80.85% 7%
MPPCAD 79.6 80% 13%

NOSTRADAMUS 29 77.26% 6%
ADDICT (τmax = 5) 4.2 80% 3%
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Detected anomalies
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Generalization to a semi-supervised scenario

Introduction of a user feedback
I Semi-supervised context: unlabelled data X = {x1, ...,xn}, labelled

normal data Y = {y1, ...,yn} and labelled anomalies Z = {z1, ..., zn}
(e.g., resulting from user feedback)

I One-class SVM with user feedback

arg minw,ξ
1

2
‖w‖22 + C1

n1∑
i=1

ξi + C2

n2∑
l=1

ζl + C3

n3∑
p=1

τp

s.t. wTΦ(xi) ≥ 1− ξi and ξi ≥ 0 unlabeled data

wTΦ(yl) ≥ 1− ζl and ζl ≥ 0 labeled normal

wTΦ(zp) ≤ 1 + τp and τp ≥ 0 labeled anomalies
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Examples
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Support Vector Data Description (Tax and Duin, 1999)

Find a sphere of center c and radius R that encloses most of the data objects.

Optimization problem

minimize R2 + C

n∑
i=1

ξi

with the constraints (xi − c)T (xi − c) ≤ R2 + ξi ξi ≥ 0,∀i
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Optimization
Lagrangian

L (R, c, ξ,α,β) = R2+C

n∑
i=1

ξi−
n∑
i=1

αi
[
R2 + ξi − (xi − c)T (xi − c)

]
−

n∑
i=1

βiξi

Set to zero the partial derivatives of L with respect to the primal variables c, R
and ξ yields

c =

n∑
i=1

αixi,

n∑
i=1

αi = 1 and αi = C − βi ≤ C, ∀i

Dual problem
After replacing the expression of c in the Lagrangian, we obtain

U (α) =
n∑
i=1

αix
T
i xi −

n∑
i=1

n∑
j=1

αiαjx
T
i xj

that has to be maximized in the domain defined by
∑n
i=1 αi = 1 and

0 ≤ αi ≤ C.

48/ 71



Cours 1SN

Summary

Anomaly detection
I Classes of anomalies
I Algorithms

I Distance-based algorithms
I LoOF and LOOP
I Discords

I Domain-based algorithms
I One-Class SVM

I Isolation Forest
I Reconstruction-based algorithms
I Online anomaly detection
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Principle of isolation forests [Liu, 2008]

I Isolate each point by a random partitioning: an anomaly will be isolated
faster than a nominal point
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How to built random trees?

Initial strategy proposed in the paper by Liu

For X = {x1, ...,xn} with xi ∈ Rd, a sample of ψ instances X ′ ⊂ X (ψ :
subsample size) is used to build an isolation tree.

For each vector xi ∈ X ′

I Select one feature randomly Fk
I Compute the minimum and maximum of this feature denoted as maxk

and mink

I Divide the space into two parts corresponding to Fk < sk and Fk ≥ sk,
where sk is uniformly distributed in ] mink,maxk[

I Repeat the process until xi has been isolated

Average the numbers of steps obtained with different trees

E[h(xi)]

Note that it is NOT an expectation!!
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Length of an average path

I 52/ 71
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Anomaly score

I Definition
s(xi, ψ) = 2

−E[h(xi)]
c(ψ)

where E[h(xi)] is the average path length for xi and c(ψ) is the average
length of a path for a tree with ψ instances (c(ψ) available in [Liu, 2008])

I if E[h(xi)] = c(ψ) then s(xi, ψ) = 0.5 (uncertainty)
I if E[h(xi)] tends to 0, then s(xi, ψ) tends to 1 (xi is an anomaly)
I if E[h(xi)] tends to ψ − 1, then s(xi, ψ) tends to 0 (xi is normal)

I Separating curve: defined using the averaged lengths of the paths

Orange samples: s(xi, ψ) ≤ 0.5, blue samples: s(xi, ψ) > 0.5.
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Problem with isolation forest
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Extended Isolation Forest
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Generalized Isolation Forest
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Illustration on Synthetic Satasets
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Computation times in seconds

Dataset EIF GIF
Pen Local 2.081 ± 0.0998 1.11 ± 0.0731

Forest Cover 1.66 ± 0.0692 0.981 ± 0.0624
Speech 10.376 ± 0.839 4.729 ± 0.472
Shuttle 1.2 ± 0.0615 0.856 ± 0.0381

Mammography 1.113 ± 0.0805 0.776 ± 0.0578
Breast Cancer 1.349 ± 0.0514 0.857 ± 0.0454

Aloi 0.916 ± 0.0548 0.699 ± 0.0505
ANN Thyroid 1.103 ± 0.0525 0.778 ± 0.0463

Letter 2.027 ± 0.1005 1.112 ± 0.0657
Cardio 1.378 ± 0.0639 0.912 ± 0.0605

Pen Global 2.039 ± 0.0983 1.079 ± 0.0654
Satellite 1.963 ± 0.0811 1.145 ± 0.058

Ionosphere 2.009 ± 0.074 0.875 ± 0.0581
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Summary

Anomaly detection
I Classes of anomalies
I Algorithms

I Distance-based algorithms
I LoOF and LOOP
I Discords

I Domain-based algorithms
I One-Class SVM

I Isolation Forest
I Reconstruction-based algorithms

I Subspace-based methods
I Neural network-based approaches

I Online anomaly detection
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Outlier detection using PCA [Shyu, 2003]
I Robust estimation of the mean and correlation matrix of normal data

I Conventional estimators of the mean and correlation matrix: x̄ and Σ
I Remove the vectors with the γth largest values of

d2i = (xi − x̄)TΣ−1(xi − x̄)

These vectors are more likely to be anomalies!
I Recompute the mean and the correlation matrix Σ of the remaining vectors.

I Principal component analysis (PCA) of the vectors xi
I Compute two test statistics from the projected vector yi = Pxi

Ti,q =

q∑
j=1

y2ij
λj

Ui,p =

p∑
j=p−r+1

y2ij
λj

where λ1, ..., λq are the q largest singular values of Σ (q such that 50% of
the inertia is preserved), and λp−r+1, ..., λp are the r smallest values of Σ.
Note that Ti,q estimates the distance between xi and the mean vector
whereas Ui,p identifies vectors that have correlation structures different
from the normal data.

I Declare that xi is an anomaly if Ti,q > c1 or if Ui,q > c2
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Summary

Anomaly detection
I Classes of anomalies
I Algorithms

I Distance-based algorithms
I LoOF and LOOP

I Domain-based algorithms
I One-Class SVM

I Isolation Forest
I Reconstruction-based algorithms

I Subspace-based methods
I Neural network-based approaches

I Online anomaly detection
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Outlier detection using RNNs [Hawkins, 2002]

I Architecture of replicator neural networks

I tanh activation functions for layers 2 and 4
I staircase activation function for layer 3
I linear or sigmoidal activation function for the output layer
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How to use RNNs for outlier detection?

I Weights
The weights of the hidden layers are optimized to minimize the
reconstruction error across all training patterns.

1

mn

m∑
i=1

n∑
j=1

(xij − oij)2

where m is the number of vectors in the database, n is the number of
features of xi, xij and oij are the jth features of the ith data record xi at
the input and output of the network.

I Outlier factor for the ith data record

OFi =
1

n

n∑
j=1

(xij − oij)2.

The anomalies are the samples that are not well reconstructed by the
network!
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Summary

Anomaly detection
I Classes of anomalies
I Algorithms

I Distance-based algorithms
I LoOF and LOOP

I Domain-based algorithms
I One-Class SVM

I Isolation Forest
I Reconstruction-based algorithms

I Neural network-based approaches
I Subspace-based methods

I Online anomaly detection
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Online anomaly detection

I One-class SVM
Exploit the structure of the one-class SVM problem to find a subspace
minimizer for an (n+ 1)-point SVM problem by using the solution of the
n-point problem. This can be done using active-set quadratic programming
(Gao, 2015) or incremental/decremental learning (Diehl, 2003)

I Online decision trees
I Random Forest (Saffari, 2009): Duplicate a new observation (number of

replications distributed according to a Poisson P(1) distribution) and
classify these observations using the existing tree. A node is divided into
two branches if 1) there is a minimum number of observations in this node,
2) the Gini index is sufficiently reduced after separation. A node is
suppressed when its out-of-bag error is too large.
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Online anomaly detection

I One-class SVM
I Online decision trees

I Random Forest (Saffari, 2009)
I Mondrian Forests (Lakshminarayanan, 2014): Divide the observation space

into hypercubes as a Mondrian painting and update this decision tree when
a new observation is arriving by continuing an existing split or by creating
new branches inside an existing split.
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References on anomaly detection

Surveys
I V. Chandola and A. Banerjee and V. Kumar, Anomaly detection: a survey, ACM

Computing Surveys, vol. 41, no. 3, pp. 1-62, 2009.
I M. A. F. Pimentel, D. A. Clifton and L. Tarassenko, A review of novelty detection, Signal

Processing, vol. 99, pp. 215-249, 2014.

LOF, LoOP and Discords
I M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, LOF: Identifying Density-Based

Local Outliers, Proc. Int. Conf. Management of Data (SIGMOD), Dallas, TX, USA,
2000.

I H. P. Kriegel, P. Kröger, E. Schubert, and A. Zime, LoOP: Local outlier probabilities,
Proc. Conf. Information Knowledge Management (CIKM), Hong-Kong, China, 2009.

I E. Keogh, J. Lin and A. Fu, HOT SAX: Finding the Most Unusual Time Series
Subsequence: Algorithms and Application, Proc. Int. Conf. Data Mining (ICDM),
Houston, Texas, Nov. 27-30, 2005.
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References on anomaly detection

One-Class SVM
I B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, Estimating the

Support of a High-Dimensional Distribution, Neural Computation, vol. 13, no. 7, pp.
1443-1471, 2001.

I D. Tax and R. Duin, Support Vector Domain Description, Pattern Recognition Letters,
vol. 20, pp. 1191-1199, 1999.
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I F. T. Liu, K. M. Ting and Z.-H. Zhou, Isolation Forest, Proc. IEEE Int. Conf. Data

Mining, Pisa, Italy, 2008.
I S. Hairi, M. C. Kind and R. J. Brunner, Extended Isolation Forest, IEEE Trans. Knowl.

Data Eng., vol. 33, no. 4, April 2021.
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References on anomaly detection

Reconstruction algorithms
I M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn and L. Chang, A Novel Anomaly Detection

Scheme Based on Principal Component Classifier, Proc. Int. Conf on Data Mining,
Melbourne, Florida, USA, Nov. 19-22, 2003.

I S. Hawkins, H. He, G. Williams and R. Baxter, Outlier Detection Using Replicator Neural
Networks, Data Warehouse Knowledge Discovery, vol. 2454, pp. 170-180, 2002.

Online one-class SVM
I C. P. Diehl and G. Cauwenberghs, SVM Incremental Learning, Adaptation and

Optimization, Proc. Int. Joint Conf. Neural Networks (IJCNN), Portland, OR, USA,
July 20-24, 2003.

I K. Gao, Online One-class SVMs with Active-set Optimization for Data Streams, Proc.
Int. Conf. Machine Learning and Applications (ICMLA), Miami, FL, USA, Dec. 9-11,
2015
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References on anomaly detection

Online random forests
I A. Saffari et al., On-line Random Forests, Proc. Int. Conf. Computer Vision (ICCV),

Kyoto, Japan, Sep. 27-Oct. 04, 2009.
I B. Lakshminarayanan, D. M. Roy and Y. W. Teh, Mondrian Forests: Efficient Online

Random forests, Proc. Advances in Neural Information Processing Systems (NIPS),
Montreal, Canada, Dec. 8-13, 2014.

Thanks for your attention!
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Anomaly detection

Scikit learn examples

Lien: https://scikit-learn.org/0.21/auto_examples/plot_anomaly_comparison.html
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